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1 Summary

Signal classification or automatic modulation classification is an area of research that has been
studied for many years, originally motivated by military applications and in current years
motivated by the development of cognitive radios. Its functions may include the surveillance of
signals of interest and providing information to blind demodulation systems.

The problem of classifying Code Division Multiple Access (CDMA) signals in the presence
of Additive White Gaussian Noise (AGWN) is explored using Decision Theory. Prior state-
of-the-art has been limited to single channel digital signals such as MPSK and QAM, with
few limited attempts to develop a CDMA classifiers. Such classifiers make use of the cyclic-
correlation spectrum for single user and feature-based neural network approach for multiple
user CDMA. Other approaches have focused on blind detection, which could be used for
classification in an indirect manner.

The discussion is focused on the development of classifiers using the average likelihood
function. This approach will ensure that the development is optimal in the sense of minimizing
the error in classification when compared with any other types of classification techniques.
However, this approach has a challenging problem: it requires averaging over many unknown
parameters and can become an intractable problem.

This research was successful in reducing some of the complexity of this problem. Starting
with the definition of the probability of the code matrix and the development of the likelihood
of MPSK signals, it was possible to find an analytical solution for CDMA signals with a
small code length. Averaging over matrices with the lowest Total Squared Correlation (TSC)
allowed simplifying the equations for higher code lengths. The resulting algorithm was tested
using Receiver Operating Characteristic Curves and Accuracy versus Signal-to-Noise Ratio
(SNR). The algorithm that classifies CDMA in terms of code length and number of active
users was extended to different complex types of CDMA under the assumptions of full-loaded,
underloaded, balanced and unbalanced CDMA, for orthogonal or quasi-orthogonal codes, and
chip-level synchronization.
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2 Introduction

2.1 Modulation Classification
As the meaning suggests, modulation classification is the determination of the modulation
type of unknown signals for the purpose of identification, as it is often the case in military
applications, or for channelizing the signal through automating signal processing algorithm,
as it is the case of cognitive radio applications. Modulation classification is part of a broader
problem known as blind or uncooperative demodulation the goal of which is the extraction the
information contents of unknown signals.

An important consideration in solving this problem is the selection of the approach. The
literature presents three common types of classification methods: ad-hoc, feature-based and
decision theoretic classification. Ad-hoc methods are of problematic because they are based
on intuition, offering no guarantees in the performance of the classifier and thus becoming
questionable for the development of robust telecommunication systems. The feature-based
approaches attempt to classify signals based on the extraction of ad-hoc features by using clus-
tering algorithm such as neural networks. The method tries to infer the underlying probabilities
of each class during a training session and then assigns classes by measuring some distance
metric to the clusters in a test session. The use of these methods becomes relevant in problems
where the system’s stochastic model is either incomplete or too complex to be described in
mathematical terms. Feature based methods often provide an acceptable performance; however,
they present two subjective problems: the selection of features and the selection of data sets
for training. These weaknesses also leave the uncertainty whether optimal classification is
achieved because these methods often deal with a performance that depends on the training
data set selected. A third method for classification is model-based decision theoretic. The
method makes use of the Bayes Criterion for developing mathematical rules that guarantees
optimal performance in noise, i.e., rules that guarantee the lowest error in classification. The
method is suitable in problems where models are available and have low complexity. Its main
disadvantage is the development of rules due to the mathematical complexity, especially when
problems deal with many unknown variables.

The research presented herein is dedicated to the study of classical decision theoretic
approaches for the classification of CDMA signals. The motivation of this study includes: 1. the
need for developing applications that identify and exploit unknown signals, 2. the lack of study
done in applying average likelihood techniques to CDMA, and 3. the benefit of implementing
optimal classification method that provides reliable classification in a noisy channel.

2.2 Research Objectives
The research objective is to detect or classify CDMA signals in the presence of noise. The
scope of this research includes: the classification of CDMA under various scenarios such as
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fully-loaded, underloaded, balanced and unbalanced CDMA. It also covers the classification of
four types of CDMA that arise from a combination of BPSK and QPSK signals. For this study,
a decision theoretic approach was chosen because of the lack of methods for the classification of
CDMA, this method would serve as a future benchmark for comparing alternative classification
methods.

An initial assessment of the problem made evident that classification of CDMA is extremely
challenging. The first major problem is trying to detect CDMA signals that exhibit noise-like
characteristics. Such detection would need to rely on the ability to identify distinctive statistical
features between CDMA and noise signals. A second problem deals with the complexity of the
CDMA model. In CDMA, the large number of unknowns turns the classical decision theory
into a difficult task. In the pursuit of this goal, the research will consider the development of
MPSK decision theoretic classifier as a model to follow.

The prior state-of-the-art in modulation classification lacks of modulation classification
techniques for CDMA. A survey on modulation classification methods shows that prior decision
theoretic approaches have been applied to single user digital signals. The few approaches related
to CDMA are based on the concept of cyclostationary features. Two of these approaches are
limited to single user CDMA. A third method is not a classification method in itself, but a blind
demodulation method that can be used for parameter estimation in a Generalized Likelihood
Ratio Test (GLRT) classifier. The algorithm has been tested up to code lengths of 32 with
8 active users. The idea of performing brute force demodulation prior to the detection will
be ruled out as an alternative due to its overwhelming computational costs and convergence
problems.

The classification of CDMA problem started off the well-known MPSK classifier proposed
in [4]. The intuition suggest that a CDMA classifier is some sort of convoluted form of an BPSK
classifier because CDMA is based on BPSK signals. This reasoning proved to be somewhat
correct because all CDMA classification rules result in a BPSK rule when the number of active
users is one. The development of MPSK classifier also served as a starting point to other optimal
signal classifiers such as QAM and FSK.

One of the most obvious challenges in the developing an Average Likelihood Classifier for
CDMA is averaging over unknown variables. The number of unknowns grows proportional to the
dimensions of the code matrix used for generating CDMA; however, typical code matrices such
as Hadamard matrices occurs at code lengths of powers of 2. For these codes, the dimensions
grows also exponentially, which clearly presents a problem.

A key finding in this research was the proposition of a weight for averaging CDMA codes.
This weighting function is referred in this discussion as the probability of the code matrix. This
weight is based on the Total Squared Correlation and was a key factor in the development of a
simplified decision rule. Other consideration is the form of the simplified average likelihood
function. It was found that this function can be expressed as a product of hyperbolic cosine
functions and decaying exponentials. Many of these decaying exponentials are a function of an
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introduced parameter referred as the precision of the probability of the code. Increasing the
precision of our classifier eliminated many terms of the average likelihood. This simplification
is important because the likelihood function can easily become intractable or show numerical
problems.

The major contribution of this study is the development of the first average likelihood
classifier for multiuser CDMA. The hypothesis under test is the code length and the number
of users, which in some aspect is analogous to the classification of M-ary PSK with M as
the hypothesis under test. The simplified average likelihood of CDMA was developed using
a standard procedure, so the likelihood function can be used against any other signal such
as MPSK or QAM. In this research, CDMA was tested against BPSK and QPSK, which are
special cases of CDMA under the assumption the the code length equals one. The same average
likelihood for CDMA made of BPSK symbols can be reused and applied to all types of CDMA
generated from combinations of BPSK and QPSK symbols without adding more complexity.

2.3 Roadmap
The research path is provided in Figure 1. It shows the main step taken to solve the problem.
The objective is to detect/classify CDMA signals in AWGN, Box A in the diagram. The study
begins with a brief discussion of Detection Theory and how this theory was applied to the
previous state-of-the-art as discussed in Chapter 3. In the case of single user signals, modulation
classification associates a digital signal to a constellation. The hypothesis is the signal type and
in the case of MPSK and QAM signals, the type is associated to the size of the constellation. In
the case of CDMA, the modulation type will be associated to the code length and the number of
active users.

The based model for developing and simplifying the average likelihood function of CDMA
signals is the BPSK, Box B in the diagram. Both signals are based on binary antipodal variables
and, at the end of the development, their likelihoods share some similarities. The likelihood
for one BPSK symbol is very simple. It is expressed as a product of an exponential function
in terms of the signal-to-noise (SNR) ratio. However, the likelihood of a CDMA is extremely
complicated for a CDMA. This problem was solved by using symbolic algebra algorithms (Box
C) for small code lengths as discussed in Chapter 4.

After analysing code lengths of 2, 3 and 4, the research turns its attention to the development
of a mathematical formulation CDMA (Box D) with the following assumptions:

■ chip-synchronous CDMA,

■ frame-asynchronous CDMA,

■ type 1 (BPSK-code/BPSK-data),

■ unknown orthogonal code matrix (unknown permutations),
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Fig. 1 Research Path
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■ unknown data vector,

■ unknown code length and number of users (hypothesis),

■ fully-loaded.

The case of unbalanced CDMA and averaging over Gaussian Distributed amplitude devia-
tions over a nominal energy per symbol (Box F). This work has been presented in MILCOM
2014. [5] The same development was slightly modified and applied to other types of CDMA
generated from a combination of QPSK and BPSK symbols (Box E). A key approach was to
represent complex models in terms of real block matrices and apply an approach similar to type
1 CDMA. A technical paper has been submitted to MILCOM 2016. [6]

2.4 Organization
This publication is organized in six sections. This introduction covers the problem of modulation
classification and discusses briefly the research objectives. In section 3, the discussion covers
some technical background with the prior state-of-the-art; discusses some essential concepts
found in decision theory; introduces the potential approaches; and provides and insight of
how decision theory is applied to the classification of MPSK signals. section 4, considers the
classification problem applied to CDMA and provide the unique mathematical framework. The
average likelihood is simplified in section 5. In section 6 the concept is extended to other types
of CDMA derived from combinations of BPSK and QPSK symbols. Finally, section 7 provides
a summary of the findings, future work and conclusions.

6
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3 Modulation Classification Methods
This section provides a brief review of the concepts found in decision theory and how they
are applied to the problem of modulation classification. Existing methods in modulation
classification can be grouped into three main categories which are discussed in the following
sections. Feature-based and decision theoretic provide a strong mathematical framework and
become the main subjects in the discussion. The decision theoretic method will be the method
of choice for developing CDMA classification rules after evaluating the prior state-of-the-art
and their weaknesses. Selecting a decision theoretic approach is risky research due to the
complexities in averaging the CDMA model, but this risk is compensated by developing a new
algorithm based on optimization principles.

3.0.1 Ad Hoc

As mentioned before, Ad Hoc classifiers consist of deriving intuitive rules for classification.
Several of these methods have been discussed in [7] and applied to military applications.
Some of them are simple as: thresholding signals, counting samples, generating histograms
[8] or applying mathematical rules such and the well-known Mth-Power Classifier for MPSK
signals. The construction of these rules do not allow for analytically predicting the performance.
Although simple rules such as the Mth power law could be approximations of optimal rules,
they are commonly considered of limited significance unless their performance is supported by
some theoretical framework.

3.0.2 Feature Based Methods

A more scientific approach consists of identifying important features of a signal and try to
cluster the features in a multidimensional space. The different clusters will be associated to
a modulation type by using a clustering technique such as neural network. The approach is
a good choice when the there is little known about the stochastic model. Examples of these
methods are the Statistical-Moment Based Classifier presented by [9]. The rationale is that
statistical moments derived from signal parameters such as frequency, amplitude or phase can
provide useful classification features for a neural network classifier.

A reference of this technique is the method proposed by [1] for classifying single user
CDMA using cyclostationary features, i.e., the peaks found in the cyclic correlation spectrum.
These features are obtained by applying a Fast Fourier Transform (FFT) and averaging over
frequencies as illustrated in Figure 2. Frequency smoothing is used to find significant peaks
which are fed into a neural network.

The selection of peaks as features is motivated by the signal’s cyclostationary properties
of a single CDMA user. The referenced method is limited to a single spreading sequence and
classifying multiuser CDMA signals is out of the scope of this particular development. Under
the proposed example, the sequence resulting from the modulation of a QPSK spreading and
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a BPSK modulation is another QPSK signal. So in reality this neural network classifier is
processing periodic QPSK signals for ultrawide band radar applications rather than for multi-
user CDMA for telecommunications. The report tested the classification of two pseudo noise
sequences with code lengths 15 and 31. The classifier was able to achieve accuracies between
86.5 and 100 percent for SNR =−3dB and SNR = ∞ respectively.

Fig. 2 Feature-Based Neural Network Classifier

The performance of a neural network depends on these features and so there is no guarantee
that the features selected is a fairly complete representation of all the features needed for a
correct classification. In addition to this fact, the performance of clustering methods is known
to depend on the training data.

3.0.3 Decision Theoretic Methods

Decision theoretic methods deal with the problem of optimization of metrics: the minimization
of a cost function or the maximization of the accuracy. The theory is based on classical detection
theory [10]. Bayes Theorem provides the statistical model that characterizes the source, the
channel and the observation space as shown in Figure 4. In our problem, the source generates a
finite set of known classes {Hi} representing the modulation types. Each class is associated to
probability p(H ) referred as the prior probability. The source generates an element of a class
and sends it through a noisy channel which is characterized by a likelihood probability p(r|H )
or the probability of the observation when a class in a noisy channel. The observation r is fed
into a detector that contains a classification rule based on optimality principles.

Table 1 shows four types of outcomes may occur in a binary classification. Similar concepts
can be extended to multiple classes by constructing an error probability matrix of multiple
dimensions. The sum of non-diagonal elements represents the total probability of error in
classification while the sum of diagonal elements represents the accuracy. The construction of
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Fig. 3 Bayesian Model

Table 1 Error Probability Matrix

True Class: Class H0 Class H1

Decide for H0

True Negative
P(Decide H0|H0)

False Negative
P(Decide H0|H1)

Decide for H1

False Positive
P(Decide H1|H0)

True Positive
P(Decide H1|H1)

an optimal decision rule shall maximize the sum of the diagonal elements and minimize the
non-diagonal elements.

The decision process requires establishing thresholds or decision regions in the observation
space of r. A cost function can be assigned to each decision, but these costs are commonly
ignored in classification problems. The optimization of the decision regions for achieving
maximum accuracy is equivalent to maximizing the posterior probability according to (1).

Decide for H = argmax
H ∈{H0,H1,...,HN}

p(H |r)p(r)

= argmax
H ∈{H0,H1,...,HN}

p(r|H )p(H )
(1)

When the priors are not available, a decision is taken by choosing the maximum likelihood
as shown in (2). Ignoring the priors is equivalent to assuming that all prior probabilities are
equal.

Decide for H = argmax
H ∈{H0,H1,...,HN}

p(r|H ) (2)

In binary classification, the same criterion can be expressed in a form of a Likelihood Ratio
Test (LRT) as shown in (3). The determination of the likelihood function and its simplifica-
tion is an important step in deriving optimal rules for modulation classification. Computing
the likelihood becomes more complicated when the likelihood involves multiple unknown
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Table 2 Hypotheses in Various Modulation Classification Problems

Problem Hypothesis Cluster

Detection of BPSK H ∈ {±1} point in the C plane

Classification of MPSK H ∈ {M = 2,4, ...} constellation in the C plane

Classification of CDMA H ∈ {L,U}
vectors a⃗ ∈ RL

a⃗T a⃗ = L ·U

parameters.
p(r|H1)

p(r|H0)

Decide H1
≷

Decide H0

p(H0)

p(H1)
(3)

Modulation classification deals with signals with unknown parameters in noise. The
resulting likelihood is conditioned on a parameter vector θ⃗ that is unknown to the classifier
and has to be supplied in some way prior to classification. Often, the parameters are treated as
random variables and the expectation must be taken over all the possible values of θ⃗ according
to (4) in order to remove the condition according to the Bayes Theorem.

p(r|H ) = E
θ⃗
{p(r|H , θ⃗)} (4)

A hypothesis can be interpreted as the label of a region belonging to a class in the observation
space. (See Table 5) In detection problems, the hypothesis is the symbol. In blind demodulation
of single user signals, the hypothesis can be visualized as a label associated to a constellation
in the complex plane. In the case of CDMA, the hypothesis can be visualized as a label to
associated to a collection of particular vectors.

3.1 Decision Theory for Modulation Classification
Stochastic processes are characterized by probabilities that evolve over parameters such as time
t which are not associated to a random variable. A stochastic processes n(t) is characterized
by the statistical moments. Modulation classification often deals with wide-sense stationary
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processes characterized by having a zero mean and constant autocorrelation function:

E{n(t)}= 0,

E{n(t)n∗(t +∆t)}= N0

2
δ (∆t).

(5)

Modulation classification also deals with cyclostationary processes, i.e., processes that have a
periodic nature in the correlation function R as shown in (6). The parameter α in this equation
represents the cyclic-correlation period.

R(∆t) = E{r(t)r∗(t +∆t)}
R(∆t +α) = R(∆t)

(6)

A common channel found in telecommunications is the Additive White Gaussian channel given
by (7). The modulated signal is transmitted through a noisy channel with noise n(t). At the
receiver, we have the observation in the form of a process r(t). A classification rule developed
from (1) or (4) requires using random variables. It would be impractical to characterize the
likelihood using an infinite number of observations generated by r(t) at every instant.

r(t) = s(t, θ⃗)+n(t)

n(t)∼ N (µ,σ2)
(7)

Parametrizing the likelihood in terms of t is inconvenient because the observation r(t) has
infinite dimensions and the likelihood of a given ensemble of r(t) is zero. A practical way
of handling processes is by approximating the observation to a finite set of observations by
using some finite approximation. A finite set of observations can be achieved by defining a
complete orthonormal (CON) set {ψi(t)} in (8) and approximating r(t) in terms of a finite set
of independent coefficients {rk(⃗θ)}.

CON = {ψk(t)}k=0:∞

⟨ψi(t),ψ j(t)⟩=
∫

∞

−∞

ψi(t)ψ∗
j (t)dt = δi, j

(8)

In modulated sequences, a convenient choice for our basis is a set of normalized, non-
overlapping pulses with a width T delayed by kT according to (9).

ψk(t) =


1
T

for T k ≤ t < T (k+1) and k Integer

0 otherwise
(9)
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The reduction in dimensionality is achieved by truncating the series to a finite number of
coefficients (K < ∞) according to (10). The likelihood p({rk}K|H ) will be constructed from
the statistics of each random variables rk. For a linear Gaussian process r(t), the statistics of
these random variables are also Gaussian.

rk(⃗θ) = ⟨r(t),ψk(t)⟩

r(t)≈
K−1

∑
k=0

rk(⃗θ)ψk(t)
(10)

Eliminating the dependency of the observation parameters requires either an estimate of the
parameter vector or performing the expectation over all the unknowns as shown in (4). If the last
method is selected, the expectation can be calculated in several ways. The exact computation of
the expectation results in average likelihood function and the classifier is an Average Likelihood
Ratio Test (ALRT). An approximation of the expectation results in Quasi-Average Likelihood
Ratio Test (QALRT). The substitution of θ⃗ by estimated parameters results in a Generalized
Likelihood Ratio Test (GLRT). A combination of any of these methods results in a Hybrid
Likelihood Ratio Test (HLRT).

3.2 Modulation Classification in the Literature
Table 3 shows a list of known methods adapted from [2]. Likelihood functions are specific to
modulation signals and their respective channel models which may be seen as a disadvantage
because changing the model will require a new computation of the likelihood function. The
most popular classifiers are based on single channel BPSK, QPSK, MPSK and QAM signals.

Decision theoretic methods are less abundant in the literature when compared to feature-
based approaches. This can be attributed to the complexity in the development of such algo-
rithms. Decision theoretic methods based on likelihood functions require good signal models
and few unknown parameters. To overcome some of the difficulties in calculating the average
likelihood function, authors recur to sub-optimal approaches such as QLRT, GLRT and HLRT.
The case of CDMA has simple models, but as the number of unknowns increases, the averaging
process translates into higher computational costs.

From the survey of decision theoretical methods, it is evident that there was a lack of
likelihood methods for classifying of CDMA signals and it is speculated that the absence of
CDMA methods is related to the complexity of the averaging process. A contributions of this
research include the development and publication of classifier for BPSK-code/BPSK-signals in
2014 and the submission of a similar paper on complex CDMA classification in 2016.
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Table 3 Survey of Likelihood-Based Classifiers

Authors Classifier Modulation Unknowns Channel
Sills ALRT BPSK, QPSK,

16QAM, V29,
32QAM,
64QAM

carrier phase AWGN

Wei, Mendel ALRT 16QAM, V29 - AWGN
Kim, Polydoros QLRT BPSK, QPSK carrier phase AWGN
Sapiano, Martin ALRT UW, BPSK,

QPSK, 8PSK,
16PSK

carrier phase AWGN

Long QLRT UW, BPSK,
QPSK, 8PSK

carrier phase,
timing offset

AWGN

Hong, Ho ALRT BPSK, QPSK symbol level AWGN
Beidas, Weber QLRT 32FSK, 64FSK phase jitter AWGN
Beidas, Weber QLRT 32FSK, 64FSK phase jitter, tim-

ing
AWGN

Panagiotu GLRT, HLRT 16PSK,
16QAM

carrier phase AWGN

Chugg HLRT BPSK, QPSK,
OQPSK

carrier phase,
signal power,
PSD

AWGN

Hong, Ho HLRT BPSK, QPSK signal level AWGN
Hong, Ho HLRT BPSK, QPSK angle of arrival AWGN
Dobre HLRT BPSK, QPSK,

16QAM, V29,
32QAM,
64QAM

channel ampli-
tude, phase

flat fading

Abdi ALRT, QLRT 16QAM,
32QAM,
64QAM

Channel ampli-
tude and phase

flat fading

Vega-Irizarry,
Fam

ALRT CDMA type 1 code, data vec-
tor

AWGN

Vega-Irizarry,
Fam

ALRT CDMA types 2-
4

code, data vec-
tor

AWGN

3.2.1 Generalized Likelihood Methods

A generalized classification method for CDMA may consist of making a estimate of the
spreading matrix C and data vector b⃗ with code length L, number of users U and energy per
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symbol E, as defined in the CDMA model of (11). If an accurate estimate is available, a
generalized classification rule would outperform the results of an average likelihood classifier.
However, in the case of CDMA, such estimation would be at the expense of high computational
costs and therefore the average approach would seem as a more viable approach. For comparison
purposes, we consider the development of a GLRT using Maximum A Posteriori (MAP) or
Expectation Maximization for estimating unknown parameters prior to classification.

y⃗k =

√
E
L

C b⃗k + n⃗k

C ∈ {±1}L×U

y⃗k ∈ {±1}L

n⃗k ∼ N (0,N0/2 I)
for k = 0,1, ...,K −1

(11)

The performance of generalized methods depends on the accuracy of the parameter estimate,
so this approach can be wasteful in computational resources when estimating the parameters of
wrong classes. For example, matrices of size 4×4 have a total of 216 distinct realizations using
BPSK symbols. An algorithm would need to be smart enough to discard many useless code
matrices that would never be used in CDMA transmissions. It would have to know that from
a total of 216, only 768 are orthogonal matrices suitable for CDMA, all of them permutations
of one single matrix. As the dimensions of the code matrix increase, this kind of processing
becomes infeasible.

3.2.1.1 Maximum Likelihood Estimator

The parameters C and b⃗ can be estimated using a maximum likelihood estimator. Given a
likelihood function of a multivariate Gaussian stochastic process (12), one can assume the
values L and U and try to estimate the parameters. Because we are dealing with observations y⃗k
of different code lengths, this would require reformatting the received vector in different code
lengths.

p({⃗yk}K|H ,C, {⃗b}K) =
K−1

∏
k=0

1
(πN0)L/2 exp(∥⃗yk −

√
E/L C b⃗k∥2/N0) (12)

Under unknown code matrix and data vector samples, the problem of maximizing the
likelihood of a CDMA signal (13) does not have a closed form solution. In addition, its large
number of variables makes the computation of the parameters extremely difficult to estimate due
to the limitation of numerical methods use to solve the equations. Using an average likelihood
estimate of the parameters for classification purposes will not solve the classification problem
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in an efficient way.

∇⃗b p(⃗yk|L×U CDMA,C,⃗b) = 0

→ ∑
k

CH (⃗yk −
√

E/L C b⃗k) = 0

∇C p(⃗yk|L×U CDMA,C,⃗bk) = 0

→ ∑
k

b⃗H
k (⃗yk −

√
E/L C b⃗k) = 0

(13)

3.2.1.2 Expectation Maximization Approach

An Expectation Maximization (EM) approach for CDMA for blind detection [11] provides an
iterative way of estimating the code matrix C as an updatable parameter and the data vector b⃗ as
a hidden random variable of the EM algorithm. EM belongs to the group of statistical inference
methods in which the parameter is adjusted such that it minimizes the distance between an
empirical distribution and a model distribution [12].

The proposed algorithm consists of four major steps.

1. Project y⃗ into a signal space.

2. Define Ω as the updatable code matrix given by (16).

3. Estimate b⃗ using a MMSE estimator.

4. Maximize the expectation to obtain an update of Ω.

5. Repeat the last two steps until convergence is achieved.

The algorithm assumes that the code length L is known and the number of users U is
determined by setting a threshold on the singular values of the correlation matrix R.

R =
[
Vs Vn

][Λs 0
0 Λn

][
Vs Vn

]H
= E{⃗y y⃗T} (14)

The eigenvalues of the signal space given by Λs contain the energy of the signal. The
eigenvalues of the noise space given by Λn contain only noise energy as shown in (15). The
eigenvectors in Vs associated with the signal space contain information about the code matrix
used to generate the CDMA signal.

(Λs)i,i =

{
Ei/L+N0/2 for signal present

0 for noise only
, (Λn)i,i =

{
0 for signal present

N0/2 for noise only
(15)
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The observation r⃗ is the projection of y⃗ into the signal space. This is an estimate value
because it requires a threshold to separate the signal from the noise space in (14).

r⃗ =V H
s y⃗

Ω =V H
s C

(16)

The updatable matrix Ω is the product of the projection and the code C. Both Ω and r⃗ are
parameters of the likelihood function given below.

p(⃗r,⃗b(⃗y)|Ω) =
1

(π N0)U/2 e−∥⃗r−
√

E/L Ω b⃗∥2/N0 (17)

The data vector b⃗ can be calculated using a Minimum Mean Squared Error (MMSE) detector
[13] as shown in (18).

ˆ⃗b = sign(w⃗T r⃗)

w⃗ = argmin
w⃗

E{⃗b− ˆ⃗b}
(18)

The updated Ω is calculated from the EM algorithm in (19).

Ω̂ = argmax
Ω

p({⃗rk}K, {⃗bk}K|Ω) (19)

The computation of the priors p({⃗bk}K) presents a problem in the algorithm because
computing b⃗k for possible 2U values becomes computationally expensive. Instead, the author
has decided to simplify the prior probability by forcing it to be constant p({⃗bk}K) = 1/2UK .

As it was mentioned before, estimating the code matrix using (19) would be impractical for
modulation classification because any attempt to demodulate a wrong hypothesis results in a
waste of computational resources and processing time. Also, the blind demodulation algorithm
has been tested up to code lengths of 32 and 8 active users. Extending the algorithm to higher
code lengths would be unusable because the convergence of the EM would degrade as the
number of clusters increases. The number of clusters would be equivalent to the number of
elements in the code matrix. EM is a method of choice when the number of clusters is relatively
small for quick convergence, which is not the case for classifying higher code lengths. So in
conclusion, the possibility of using EM blind demodulation method for constructing GLRT
modulation classifier can be ruled out as a viable alternative.
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3.2.2 The Average Likelihood Method

In this section, the average likelihood for CDMA approach will be studied by following the
development of the MPSK classifier. First, it would be assessed if constructing a simplified
likelihood function is feasible and meaningful for classification purposes. The strategy, if
correctly implemented and tested, is expected to reduce to a BPSK likelihood function for code
lengths of 1.

3.2.2.1 MPSK Model

Ideal MPSK signals in (20) are constructed from a sequence of orthonormal pulses (9) with
amplitude

√
E and a parameter vector θ⃗ = {ε,{bk}K} where εT is a time delay expressed as a

fraction ε of the pulse width T . The set {bk}K contain the signal’s symbols.

x(t) = x(t ,⃗b) =

{√
E ∑

K−1
k=0 bk ψk(t) for 0 ≤ t < KT

0 otherwise

bk ∈ {ei2πm/M | m = 0,1, ...,M−1}
for k = 0 : (K −1)

(20)

Figure 4 shows the block diagram of the source, channel and classification process. The
source generates a symbol at each time interval. The variable K represents the total number of
symbols in the MPSK signal. The modulation is a form of encoding represented by bk which can
take M possible phase values. The encoding produces the signal x(t) which is corrupted with
AWGN n(t) and produces the received signal r(t). The received signal is decorrelated using
the pulses which forms an orthonormal set. A delay ε is added at the input of the correlator to
represent the chip asynchronous nature of the correlator. The delay takes the value within the
range [0,1). The coefficients {rk}K become a finite set of observations which is processed by
the classifier.

The CON representation in (21) allow us to deal with a set of K random variables which
are the decorrelated symbols at the receiver. The concept is also applied to the unnormalized
transmit signal s(t) and the noise n(t) due to the linearity of the process.

yk(ε) = ⟨y(t − εT ),ψk(t)⟩

sk(ε) = ⟨
K−1

∑
k=0

bk ψk(t − εT ),ψk(t)⟩

nk(ε) = ⟨n(t − εT ),ψk(t)⟩
yk(ε) = sk(ε)+nk(ε)

(21)
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Fig. 4 Block Diagram of Preprocessing Stage

The statistics of the noise coefficients in (22) can be easily obtained by calculating (5) from
the series representation. The autocorrelation formula of nk(ε) is obtained from the scalar
product ⟨N0/2 δ (τ),ψl(τ)⟩.

n(t) =
K−1

∑
k=0

nk(ε)ψk(t)

E{nk(ε)}= 0

E{nk(ε) n∗l (ε)}=
N0

2
δk,l

(22)

The output of the correlator is normalized so its variance is one. The conditional likelihood
is given by (23). The SNR γ is assumed be known prior to the classification.

p(rk(ε)|H ,bk,ε) =
1√

π N0
e−∥⃗rk(ε)∥2/2−

√
2γ Re{⃗rk(ε) b∗k}−γ

r⃗k(ε) =
1√

N0/2
⟨y(t),ψk(t − εT )⟩

γ =
E
N0

(23)

This model assumes phase synchronization for simplicity. The conditional likelihood of the
MPSK signal in (23) is calculated by assuming independent symbols. The average likelihood
function is calculated in the next step.
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3.2.2.2 Averaging over Symbols

Under the assumption of independent symbols, the conditional likelihood function is given by
(24).

λ ({r}K|H = M,{bk}K,ε) =
K−1

∏
k=0

p(rk|H = M,bk,ε) (24)

The condition on the symbols {bk}K is eliminated by taking the expectation (4) over all
possible MPSK symbol values and results in a product of sums of hyperbolic cosine functions
given by:

λ ({r}K|H = M,ε) = e−∥rk(ε)∥2−K γ
K−1

∏
k=0

M/2−1

∑
m=0

cosh(
√

2γ Re{rk(ε) e−i2πm/M}). (25)

The development of the average likelihood in [4] resulted in a familiar solution (26) when
comparing hypothesis M against M/2. The average likelihood over {bk} contains the power-law
classifier derived from an Ad-Hoc rule. This classifier can be interpreted as follows: if a signal
belongs to class M, then rk raised to the Mth power results in a constant value; if a signal belongs
to class M/2, then the operation would results in noise.

log
(

λ ({rk}K|M,ε)

λ ({rk}K|M/2,ε)

)
≈ log(Eε{exp(

2
M
(
γ

2
)M/2Re{

K−1

∑
k=0

rk(ε)
M})}) (26)

3.2.2.3 CDMA Model in Time Domain

A time-domain CDMA signal is constructed from a set mutually orthogonal or quasi-orthogonal
BPSK waveforms pu(t) for u ∈ {0,1, ...,L−1} given by (27).

pu(t) =
L−1

∑
l=0

cl,u ψl(t) for u = 0,1, ...,L

ck,u ∈ {±1}
(27)

The coefficients ci,u are chosen to ensure the orthogonality of the set of waveforms. Each
waveform will serve as a separable coding channel.

⟨pu(t), pv(t)⟩=

{
L2 u = v

≈ 0 u ̸= v
(28)
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An ideal L×U CDMA signal x(t) is defined in terms of the sum of modulated versions
of these waveforms with a set of modulation parameters {bu,k}U×K where the variable K now
represents the total number of chip intervals in a single transmission. Each waveform u is
normalized with a factor 1/

√
L such that the waveform energy is 1. The product of the data

vector and normalized waveform has energy Eu.

x(t) = x(t,C, {⃗b}K/L) =

∑
K/L−1
k=0 ∑

U−1
u=0

√
Eu

L
bu,k pu(t − kLT ) for 0 ≤ t < KT

0 otherwise

bk,u ∈ {±1}

(29)

The channel is characterized by an AWGN process. Similar CON pulses to (9) are used at
the correlator. Each coefficient has two subscripts i and k that identify the location of the ith

pulse within the kth symbol interval. Each coefficient is a function of ε which now characterizes
a frame asynchronous version of the CDMA.

ri,k(ε) =
1√

N0/2
⟨y(t − εT ),ψi(t − kLT )⟩

si,k(ε) = ⟨
K/L−1

∑
k=0

U−1

∑
u=0

bu,k pu(t − kLT − εT ),ψi(t − kLT )⟩

ni,k(ε) = ⟨n(t − εT ),ψi(t − kLT )⟩
ε ∈ 0,1, ...,L−1

(30)

The observation and noise statistics are obtained in the same manner as those in (22).

E{ni,k(ε)}= 0

E{ni,k(ε)n∗l,m(ε)}=
N0

2
δi,lδk,m

(31)

For balanced CDMA, we define a chip signal-to-noise ratio (33) in terms of a nominal value
of the energy per symbol, noise power value N0 and code length as:

γc =
E

N0L
. (32)

The chip-level SNR is not a good choice for a parameter because of its dependency on the
hypothesis. A better choice is the ratio of the total energy density (ET/K) and the noise power
density value N0. For simplicity, the discussion will refer to this parameter as the density ratio.
The formula is derived assuming that the total energy ET equals the energy per symbol times
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the number of users (E ·U) multiplied by the total number of symbol intervals (K/L).

Density Ratio =
ET

KN0
= γs

L
U

(33)

All this information is sufficient for expressing the conditional likelihood of the L×U
CDMA signal per symbol frame.

λ (⃗rk|H = {L,U},C,⃗b,ε) =
1

(πN0)L/2 e−⃗rH
k (ε )⃗rk(ε)/2+

√
2γc Re{⃗rH

k (ε)}⃗sk(ε)−γc⃗sT
k (ε )⃗sk(ε)

r⃗k(ε) = {ri,k(ε)}i=0:L−1

s⃗k(ε) = {si,k(ε)}i=0:L−1

s⃗k(0) = {
U−1

∑
u=0

ci,ubu,k}i=0:L−1

(34)

This theoretical development summarizes the existing prior knowledge on classification of
CDMA signals that was derived from MPSK classifiers. The next section will discuss the steps
necessary for developing a compact form of the average likelihood (35) after computing the
expectation over all the unknowns.

λ (⃗rk|H ) = Eε{Ec0,0,c0,1,...,cL−1,U−1{Eb0,k,b1,k,...,bU−1,k{λ (⃗rk|H = {L,U},C,⃗bk,ε)}}} (35)

21

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



4 Modulation Classification Assumptions
and Procedures

This section discusses the strategy for finding a simplified form of the CDMA likelihood
function. The first approach consists on solving the average likelihood for the simplest case
of CDMA, i.e., H = {2,2} and then extend the solution to code lengths of 3, 4 and higher
code lengths. For a hypothesis H = {2,2}, the averaging process will produce 2LU+L = 64
exponential terms that would require simplification. This research found that a pattern can be
obtained with the assistance of a symbolic algebra algorithm shown in Appendix A. Finding
a rigorous mathematical proof followed such discovery and made it very simple to develop.
The success of this approach was validated using ROC curves. Such curves ensured that the
classification of simple CDMA signal can be achieved with the proposed procedure.

4.1 Uniformly Distributed Codes and Data
The first choice for averaging over the unknown codes assumesthat each code coefficient of a
spreading matrix C is a uniformly distributed (36) binary antipodal symbol. Each coefficient
is assumed to be completely independent from all the other coefficients. A problem with this
assumption is the implication that any random code could be used for CDMA, which is a
wrong assumption. Although code coefficients appear to be random, a random selection of code
coefficients does not necessarily produce a CDMA code with its characteristic low correlation
properties.

P(C) =
1

2LU

P(⃗b) =
1

2U

(36)

Under the assumptions of perfect symbol synchronization (ε = 0), balanced energy (E =
constant) and full load (L =U) CDMA, the conditional likelihood of one symbol is given by
(37). If ε is unknown, then the probability over the variable can be assumed to be uniform:
P(ε) = 1/L.

λ (⃗rk|H = {L,U},C,⃗b) =
1

(πN0)L/2 exp(−⃗rk(ε)
H r⃗k(ε)/2+

√
2γc Re{⃗rk(ε)

H }⃗sk(ε)− γc⃗sT
k (ε )⃗sk(ε))

(37)

Several key propositions and definition were established for averaging over C and b⃗. First,
we would deal with the expectation over the data vector and average over U unknown users.
Second, we would deal with the expectation of the code matrix by splitting the sum over C in
three terms that provide simplification.
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Proposition 4.1 The average of a function f (C b⃗) over C ∈ {±1}L×U and b⃗ ∈ {±1}U is given
by:

1
2LU ∑

C

1
2U ∑

b⃗

f (C b⃗) =
1

2LU ∑
C

f (C 1⃗). (38)

Proof 4.1 Defining qi, j = ci, jb j and substituting in the original equation gives the desired
result:

1
2LU ∑

C

1
2U ∑

b⃗

f (C b⃗) =
1

2LU ∑
Q

1
2U ∑

b⃗

f (Q 1⃗)

=
1

2LU ∑
Q

f (Q 1⃗)
1

2U ∑
b⃗

1

=
1

2LU ∑
C

f (C 1⃗).

(39)

■

The next step requires averaging the likelihood over the code matrix. The summation over
all possible combinations of is split in two summation terms. The first one is the summation
over a set of matrices Sa⃗. A second summation is a set of amplitude vectors a⃗ that have a
specific construction. Vectors a⃗ have non-negative coefficients ai and can take odd or even
values. The vector represents all the possible amplitude levels (40) that can be generated from
the product C b⃗.

ai =

{
0,2,4, ...,U for U even
1,3,5, ...,U for U odd

(40)

The space of all possible code matrices will be partitioned into cells defined by the set Sa⃗.

Definition 4.1 The set Sa⃗ is defined in terms of the amplitude vectors a⃗ as:

Sa⃗ =

{
C |C ∈ {±1}L×U and ai =

∣∣∣∣∣U−1

∑
j=0

ci, j

∣∣∣∣∣
}

(41)

In order to obtain from a⃗ all the possible values generated by the product C b⃗ it would be
necessary to multiply the amplitude vector by a diagonal matrix G that restores the signs as
shown in (42).

G = diag(⃗g)

g⃗ ∈ {±1}L (42)
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The average over C and b⃗ is replaced by the average over the product of G and a⃗. A new
parameter ρ can be interpreted as the probability of the sign vector g⃗.

λ (⃗rk|H = {L,U}) = 1
2LU

1
(π N0)L/2 ∑

a⃗
ρ ∑

g⃗
∑

C∈Sa⃗

e−⃗rH
k r⃗k/2+

√
2γcRe{⃗rH

k GC 1⃗}−γc∥GC⃗1∥2

ρ =
1
2L

(43)

The averaging over all g⃗ is accomplished by using Proposition 2.

Proposition 4.2 The average of the function exp(⃗gT a⃗) over g⃗ ∈ {±1} is given by:

1
2L ∑

g⃗
eg⃗T a⃗ =

L−1

∏
i=0

cosh(ai) (44)

Proof 4.2 This proposition is proven by induction. Consider vectors g⃗1 = [g0, ...,gL−1]
T ,

a⃗1 = [a0, ...,aL−1]
T , g⃗2 = [g0, ...,gL−1,gL]

T and a⃗2 = [a0, ...,aL−1,aL]
T with gi ∈ {±1}. The

proposition should hold true when increasing the dimensionality of g⃗1 to g⃗2.

If
1
2L ∑

g⃗1

eg⃗T
1 a⃗1 =

L−1

∏
i=0

cosh(ai) is true,

then
1

2L+1 ∑
g⃗2

eg⃗T
2 a⃗2 =

L

∏
i=0

cosh(ai) is true.

That is:
1

2L+1 ∑
g⃗2

eg⃗T
2 a⃗2 =

1
2L ∑

g⃗1

eg⃗T
1 a⃗1

1
2 ∑

gL

egLaL

=
1
2L ∑

g⃗1

eg⃗T
1 a⃗cosh(aL)

=
L

∏
i=0

cosh(ai)

(45)

■

The average likelihood in (43) is expressed as a summation of hyperbolic cosine function,
similar to the likelihood of MPSK signals.

λ (⃗rk|H = {L,U}) = 1
2LU

1
(π N0)L/2 ∑

a⃗
∑

C∈Sa⃗

e−⃗rH
k r⃗k/2−γc∥⃗a∥2

L−1

∏
i=0

cosh(
√

2γcRe{r∗i,k}ai) (46)
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Equation (46) was found to be identical to the solution provided by the symbolic algebra
algorithm presented in Appendix A by setting a precision parameter β = 0. The implementation
offers reduced performance when classifying between BPSK and 2×2 CDMA. The perfor-
mance of the classifier in Figure 5) has a weaker performance when compared to a classifier
that was developed using a non-uniform probability as shown in Figure 7. The equation (46)
is difficult to implement due to the large number of terms generated by all the possible com-
binations that a⃗. Each vector coefficient can take U/2 values according to (40) and there are
L coefficients, which translate to (U/2)L different amplitude vectors. For a 4×4 CDMA, the
equation is extremely complex and the implementation produced numerical problems. A more
practical approach can be obtained from weighting the CDMA matrices according to their low
correlation properties.

4.2 Averaging over a Non-Uniform Probability of the Code
When considering potential approaches for classifying CDMA matrices, some consideration
must be given to the code design. CDMA matrices are designed in a way that they exhibit low
cross correlation properties between their column vectors. The Total Squared Correlation [14]
defined in (47) is a parameter that measures the correlation between column vectors of the code
matrix.

L−1

∑
i=0

L−1

∑
j=0

|⃗cT
i c⃗ j|2 ≥ L2

c⃗i = {ci, j} j=0:L−1

(47)

A modification of this metric (48) will be used for constructing a weight referred as the
probability of a CDMA code.

τ(C) =
L−1

∑
i=0

L−1

∑
j=0

|⃗cT
i c⃗ j|2 −L2

τ(C) = ∥CT C∥2
F −L2 ≥ 0

(48)

Only full rank matrices will be considered when designing a CDMA classifier. If the
condition of fully-loaded (L =U) is not enforced, then it would be possible to find matrices
such that the TSC is minimum; however, such matrices would not qualify as CDMA codes
because extending the matrices to a full rank code matrix gives no guarantee of achieving a
minimum TSC. Therefore, any classification of underloaded CDMA signals must be constrained
to full rank code matrices that are highly uncorrelated.

The weighted average can be seen as a filtering process where some code matrices are
emphasized over others. Averaging the likelihood over a uniform probability of codes means
that no particular code matrix is preferred over others. This assessment is incorrect because
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the likelihood in (46) considers codes that do not exhibit low correlation properties. The idea
of using the TSC norm for constructing a probability of code was developed with significant
success. Norms such as the Maximum Squared Correlation (MSC) may be used; however, for
the purpose of achieving correct classification, the usage of the TSC proved to be sufficient.

A desirable property of the TSC is that it is invariant to permutations of rows and columns.
This is easily verified by expressing the TSC as a Frobenius Norm, which is also invariant to
permutations and arbitrary rotations. This invariance allows us to remove the energy term of the
likelihood out of the summation over the sign vector g⃗.

4.2.1 Design of Code Matrices using TSC

The design of orthogonal matrices for CDMA is a vast and complex field of study out of
the scope of our research goals. A brief overview of the design theory of orthogonal will
be provided to provide the idea of how the code matrices were selected in our classification
problems. The discussion starts with the definition of Hadamard matrices.

Definition 4.2 Hadamard matrix H of size L×L is a matrix of elements |hi, j|= 1 that satisfies
the following conditions:

HT H = L IL×L (49)

Hadamard matrices are constrained to {±1}L×L in the generation of CDMA signals using
BPSK symbols. There are many way to construct Hadamard matrices, but the most common
one is the so called Sylvester’s construction.

Definition 4.3 The Sylvester’s construction is given by the following recursive formula using
the Kronecker product [15]:

H2 =

[
1 1
1 −1

]
H2k = H2 ⊗H2k−1

(50)

Hadamard matrices have been a subject of study of mathematicians for years. Several
code constructions such as Paley and Williamson constructions exist at the present time. An
interesting conjecture states that Hadamard matrices can be designed for code lengths divisible
by 4. Unfortunately, there is no theorem that can prove the existence for any arbitrary code
length divisible by four [16].

Conjecture 4.1 A real Hadamard matrix with must be of code length (order) one, two or a
multiple of four. [17]

The following theorem is a modification of the relationship between the Frobenius Norm
and the Kronecker product [15].
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Theorem 4.3 The Total Squared Correlation of a matrix generated from a Kronecker product
is given by: [15]

τ(Ha ⊗Hb) = τ(Ha)τ(Hb)+L2
aτ(Hb)+L2

bτ(Ha) (51)

Equation (51) leads to the following corollary.

Corollary 4.4 If the TSC of two matrices are zero, then the TSC of the Kronecker product must
also be zero.

4.2.2 Probability of the Code Matrix

The proposed probability of a code matrix is a function of the TSC such that the weight for
small values of TSC are high while the weight for high TSC values are low. The first choice is
to construct the exponentially decaying probability function shown in (52).

P(C) =
1

W
w(C)e−βτ(C)

W = ∑
C

w(C)e−βτ(C)

w(C) =

{
1 for τ(C)≤ τmin

0 otherwise

(52)

This probability resembles a sampled version of an exponential probability function with a
precision parameter β that controls the selection of code matrices. This definition seems to be a
unique contribution of this effort, because this concept does not appear the after a review of the
technical literature. Other probabilities can be derived using similar concepts, but the interest in
this particular one is the preservation of the exponential nature of the entire likelihood function.
The probability can be tailored for a limited set of TSC values least or equal than τ(C)< τmax.
We assume that τmax → ∞.

4.2.3 Expectation over a Non-Uniform Probability of Code

The development of the likelihood under the assumption of non-uniform probability of code
starts with Proposition 4.5 and results in (53) assuming that a frame synchronous signal is
provided.

λ (⃗rk|H = {L,U}) = 1
(π N0)L/2 ∑

a⃗
∑
τ

ρ ∑
g⃗

∑
C∈Sa⃗,τ

P(C)e−⃗rH
k r⃗k/2+

√
2γc Re{⃗rH

k GC 1⃗}−γc∥GC⃗1∥2

(53)
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The space of all possible code matrices will be partitioned in non-overlapping sets similar
to the methodology used for uniformly distributed codes. These sets contain matrices such that
the absolute value of the sum of the columns equals some vector a⃗ and a code matrix in the set
has a TSC value τ according to 54.

Definition 4.4 The set Sa⃗,τ is defined as:

Sa⃗,τ =

{
C |C ∈ {±1}L×U ,ai =

∣∣∣∣∣U−1

∑
j=0

ci, j

∣∣∣∣∣ and τ(C) = τ

}
(54)

The summation over the code coefficients is split into three summation terms, the summation
over g⃗, C ∈ Sa⃗,τ , and τ as shown in (53). Then, we proceed to rearrange the summations as
follows:

λ (⃗rk|H = {L,U}) = e−⃗rH
k r⃗k/2

(π N0)L/2 ∑
a⃗

e−γc∥⃗a∥2

∑
τ

∑
C∈Sa⃗,τ

e−βτ(C)

W
ρ ∑

g⃗
e
√

2γc Re{⃗rH
k G a⃗}. (55)

Averaging over G is performed by swapping the diagonal terms in the matrix with the observa-
tion vector r⃗ in the correlation term.

r⃗T G a⃗ = g⃗T diag(⃗r) a⃗ (56)

Proposition 4.2 can be applied to obtain the average likelihood function in the form of products
of hyperbolic cosine functions given by (57).

λ (⃗rk|H = {L,U}) = e−⃗rH
k r⃗k/2

(π N0)L/2 ∑
a⃗

e−γc∥⃗a∥2
α (⃗a,β )

L−1

∏
i=0

cosh(
√

2γc Re{r∗i,k} ai) (57)

α (⃗a,β ) = ∑
τ

∑
C∈Sa⃗,τ

e−βτ(C)

W (58)

This equation can be divided in four terms: the energy of the received signal, the energy of
the model, a term that depends on the code and a product of hyperbolic cosine functions that
depends on the correlation between the received signal and the model.

4.2.4 Analytical Average Likelihood

The empirical likelihood obtained from the symbolic-algebra algorithm is consistent with the
derived likelihood (57) and (58) for code lengths between 1 through 4. The generality of the
development give no reason to suspect that this average likelihood formula would not hold for
higher code lengths.
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4.2.4.1 BPSK versus 2×2 CDMA

The likelihood (57) of a single symbol interval with H = {L,U} provides an exact solution
(60) applicable to both: uniformly distributed code β = 0 and the non-uniform probability
of the code β ̸= 0. It also provides the formula for BPSK signals by just setting L = 1. A
binary classification between BPSK and 2×2 CDMA requires comparing pairs independent
BPSK symbols against single 2× 2 CDMA symbols. We obtain the formula for two BPSK
independent symbols.

λ ({rk}2|H = {1,1}) = e−γc cosh(
√

2γc Re{r0}) · e−γc cosh(
√

2γc Re{r1}) (59)

The exact likelihood of a 2×2 CDMA provides means to explore the effect of the precision
parameter on the overall likelihood function.

λ (⃗rk|H = {2,2}) = 1
2(1+ e−8β )

(e−8β + e−4γc cosh(2
√

2γc Re{r0,k})+

e−4γc cosh(2
√

2γc Re{r1,k})+ e−8β−4γc cosh(2
√

2γc Re{r0,k})cosh(2
√

2γc Re{r1,k}))
(60)

Figures 5 through 7 show the Receiver Operating Characteristic (ROC) Curves for a LRT
for 2×2 CDMA vs. BPSK. These curves were based on 2000 tests, each test uses a sequence of
128 chips, and plotted for different total-SNR (total energy over N0). Each graph is for a single
value of β . The best performance is obtained when β → ∞. Due to the exponential probability
(52) the coefficients α decays quickly for low TSC values.
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Fig. 5 ROC H1 = {2,2} versus H0 = {1,1}, β = 0
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Fig. 6 ROC H2 = {2,2} versus H1 = {1,1}, β = 1
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Fig. 7 ROC H1 = {2,2} versus H1 = {1,1}, β = ∞
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4.3 Simplification of the Average Likelihood
The likelihood of a CDMA can be further decomposed in two terms: those that quickly decay
to zero and those that persist when β → ∞. The dependency of each α (⃗a,β ) coefficient for a
2×2 CDMA is shown in Figure 8 and 9. In this specific case, α([0,0]T ,β ) and α([2,2]T ,β )
converge to zero while α([0,2]T ,β ) and α([2,0]T ,β ) converge to 1/2.

Fig. 8 2×2 CDMA Vanishing Coefficients α versus β , a⃗ ∈ {[0,0]T , [2,2]T}

The computation of these coefficients become extremely difficult even for simple cases like
a 2×2 CDMA. A logical approach must consider the limit as β → ∞ using the definition of α

provided in 58.

Definition 4.5 A feature vector a⃗⋆ = {a⋆i } for a given hypothesis H = {L,U}is defined in
terms of minimum TSC matrices C⋆ such that:

τ(C)≥ τ(C⋆) = τmin

a⋆i = |
U−1

∑
j=0

c⋆i, j|.
(61)

Proposition 4.5 The limit of α (⃗a,β ) as β approaches infinity depends on the feature vectors
as follows:

lim
β→∞

α (⃗a,β ) =


0 for a⃗ ̸= a⃗⋆

|Sa⃗,τmin|
∑a⃗∈{⃗a⋆} |Sa⃗,τmin|

for a⃗ = a⃗⋆
(62)
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Fig. 9 2×2 CDMA Non-Vanishing Coefficients α versus β , a⃗ ∈ {[0,2]T , [2,0]T}

Proof 4.3 From a set of all possible vectors {⃗a j} and all possible TSC values {τi} with
0 ≤ τ0 < τi < τi+1 for H = {L,U}, we define di, j = |Sa⃗ j,τi| and di = ∑ j di, j. The coefficients
can be expressed as a ratio of exponential functions.

lim
β→∞

α (⃗a,β ) =
di,ke−βτk

∑i die−βτi
(63)

Then, we multiply by eβτ0 on both the numerator and denominator. Any term with τk > τ0
vanishes as β → ∞ leaving only the terms where τk = τ0.

lim
β→∞

α (⃗a,β ) =
di,ke−β (τk−τ0)

∑i die−β (τi−τ0)
(64)

Therefore, the coefficients depend on the feature vector set {⃗a⋆}.

lim
β→∞

α (⃗a,β ) =

 0 for a⃗ ̸= a⃗⋆
d0, j

d0
for a⃗ = a⃗⋆

(65)

■

By using an infinite precision, many terms vanishes from the average likelihood function
leaving only the terms that are contributions of the lowest TSC code matrix and allowing to
perform the classification in a computationally efficient way. The question remains whether
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computing the likelihood coefficients would be affordable after this simplification. The Mat-
lab algorithm shown in Appendix B was implemented for computing for small code lengths.
Unfortunately, the code becomes useless for processing code lengths greater than 4. A compu-
tationally efficient approach for estimating the coefficients can be constructed from interpreting
the meaning of α (⃗a,∞).

4.3.1 Interpretation of the CDMA Likelihood Coefficients

The values of α (⃗a,β ) can be calculated exactly for code lengths of 2 as follows. First, the
feature vectors a⃗ are identified.

a⃗⋆1 = [0,2]T

a⃗⋆2 = [2,0]T
(66)

The code matrices of interest in the sets Sa⃗,τ are:

Sa⃗⋆1,τ = {C⋆
1} Sa⃗⋆2,τ = {C⋆

2}

C⋆
1 =

[
1 1
1 −1

]
C⋆

2 =

[
1 −1
1 1

] (67)

With each set of cardinality 1, it is easy to calculate the values of the likelihood coefficients as
follows:

α (⃗a⋆1,∞) =
|Sa⃗⋆1,0|

|Sa⃗⋆1,0|+ |Sa⃗⋆2,0|
=

1
2

α (⃗a⋆2,∞) =
|Sa⃗⋆2,0|

|Sa⃗⋆1,0|+ |Sa⃗⋆2,0|
=

1
2

(68)

A closer look at (68) reveals that the likelihood coefficients α are a ratio of the occurrence
of particular CDMA vectors abs(C b⃗) over the total number of feature vectors that exists for
given hypothesis H = {L,U}. A more practical way of calculating the coefficients comes from
(69).

α (⃗a⋆,∞)≈ ∑
b⃗

count(abs(C⋆ b⃗) = a⃗⋆)
2U (69)

This limit is an approximation because for a given code length, there may exist several
orthogonal matrices C⋆ that are not related by a permutation of columns and rows. These code
matrices are referred as non-equivalent matrices [18]. Unfortunately, despite the numerous code
constructions that exist in the literature, there is no specific theorem that predicts the number
of non-equivalent matrices for a specific code length. It is known that for code lengths of
L = 4,8,16,32,64 and 128 there are 1,1,5,3,60 and 487 non-equivalent matrices respectively
[19]. This limits the construction of the average likelihood to our knowledge on codes. It was
found that extracting the feature vectors of each of the five 16× 16 CDMA non-equivalent
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matrices resulted in the same values of a⃗⋆ with slightly different coefficients values. An
assumption that non-equivalent Hadamard matrices generate the same set of feature vector will
be use in our classification problems. The algorithm for generating the likelihood coefficients
and the feature vectors is provided in Appendix D.

The following procedure summarizes the construction of the simplified likelihood function
given a hypothesis {L,U}. The procedure is applied to find the likelihood function of a 4×4
CDMA.

1. Find C⋆, a code matrix with minimum TSC;

2. Extract the feature vector from C⋆ b⃗ by varying b⃗;

3. Compute the likelihood coefficients using (69);

4. Using the coefficients of the feature vector, construct the product of hyperbolic cosines in
(57).

The 4×4 Hadamard matrix is given by the Sylvester’s Construction (50). There are two
equivalent matrices of interest that produce two important feature vectors. All other feature
vectors can be derived from the permutation of these vectors.

C⋆
1 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 C⋆
2 =


−1 1 1 1

1 −1 1 1
1 1 −1 1
1 1 1 −1

 (70)

The 4× 4 case has two feature vectors which can be obtained from adding the columns
of the previous matrices. The likelihood coefficients do not change when a a⃗⋆ is permuted.
This invariance of α is due to the exchangeability property [20] of the model that makes the
likelihood invariant to row permutations. Because the transmission model admits CDMA code
matrix C with any arbitrary permutation of rows, the final likelihood does not depend on the
order of the vector coefficients of r⃗.

The cardinality of the sets is computed as follows. For C⋆
1 , the rows that add up to zero

can be permuted in 3! ways. Also there are 24 ways of changing the sign. The value |Sa⃗⋆1,0|
is 3! ·24 = 96. For C⋆

2 , the rows that add up to 2 can be permuted in 4! ways. Also there are
24 ways of changing the sign. The value |Sa⃗⋆2,0| is 4! ·24 = 384. At the time of computing the
coefficients α , one needs to account for 4 possible permutations the a⃗⋆1. The total number of
Hadamard matrices for a 4×4 code matrix is the sum of the cardinalities of these sets, that is
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768. This result is in agreement with the experimental computations.

a⃗⋆1 = [4,0,0,0]T

a⃗⋆2 = [1,1,1,1]T

α (⃗a⋆1,∞) =
|Sa⃗⋆1,0|

4|Sa⃗⋆1,0|+ |Sa⃗⋆2,0|
=

1
8

α (⃗a⋆2,∞) =
|Sa⃗⋆2,0|

4|Sa⃗⋆1,0|+ |Sa⃗⋆2,0|
=

1
2

(71)

Finally, the 4× 4 average likelihood for a single symbol is constructed by forming the
hyperbolic cosine products.

λ (⃗rk|H = {4,4}) = e−⟨⃗rk ,⃗rk⟩/2

(πN0)L/2

(
3

∑
i=0

1
8

e−42γccosh(4
√

2γc Re{ri,k})

+
1
2

3

∏
i=0

e−42γccosh(2
√

2γc Re{ri,k})

) (72)

As the code length and number of user grow, the average likelihood becomes a complicated
expression and further simplification is needed to avoid numerical errors or any excessive
computational burden.

4.4 Discussion and Results
Figure 10 through 11 show ROC curves for several simple cases of spreading codes. The length
of the signal under test is expressed in number of chips. A test sample of 128 and 192 chips
was chosen for code lengths multiple of 2 or 3 respectively. The plots are based on 2000 tests.
The total SNR is the total energy ET divided by the noise power N0. Few observations can
be made from these simulations. The conclusion is that the average likelihood classifier for
CDMA is capable of classifying small code lengths. Figure 14 shows that it is possible to
distinguish between BPSK and CDMA with no surprise because the proposed development
follows a standard procedure that can be extended to other hypothesis such as MPSK or QAM
modulation.

4.4.1 Average Likelihood for the Underloaded Case

The underloaded CDMA model assumes that the data vector b⃗ is given by (73). The equation
introduces new variables ∆i that represent whether the user i is active (1) or inactive (0). Defining
a scenario of U < L users can be expressed in L!/((L−U)!U!) different permutations, but all

37

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Fig. 10 ROC Curve for H = {4,4} vs. {3,3} CDMA
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Fig. 11 ROC Curve for H = {2,2} CDMA vs. BPSK
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these results are equivalent if one introduces an arbitrary permutation matrix P between Q
and b⃗ which leaves the same model if QP redefined as Q′. It is not necessary to average over
all possible combinations of ∆i, because its average will be equivalent to the likelihood of any
arbitrary column permutation.

b⃗ = [b0∆0,b1∆1, ...,bL∆L]
T

∆i ∈ {0,1}
(73)

From the point of view of (57) the form of the average likelihood should remain the same,
except for the definitions of the feature vectors (69). They must be calculated assuming that
L−U arbitrary users are inactive.

An interesting case of underloaded CDMA is shown in Figure 12 where a 4×2 CDMA
fails to be differentiated from a 2×2 CDMA. The behavior of the classifier is explained by
understanding the Sylvester’s Construction that was use to generate the code. A 4×2 CDMA
can be seen as two appended CDMA vectors from a 2×2 matrix. Other underloaded cases are
shown in Figures 13 and 14. Both figures validates the possibility of classifying underloaded
CDMA for small code lengths.

Another interesting construction is the case of L×1 CDMA. The L×1 CDMA likelihood
function reduces to the likelihood of L independent BPSK symbols; therefore, it will be
impossible to differentiate between those two classes given the provided CDMA model. In such
cases, the classification would have to rely on the cyclostationary concepts.

The next section provides a simplification of the likelihood function as well as an extension
to much larger code length values.
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Fig. 12 ROC Curve for H = {4,2} vs. {2,2} CDMA
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Fig. 13 ROC Curve for H = {3,2} vs. {2,2} CDMA
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Fig. 14 ROC Curve for H = {4,2} vs. {3,2} CDMA
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5 Method Simplification, Assumptions and
Procedures

The goal of this section is to approximate of the average likelihood function developed in the
previous section. The approximation is needed for processing high values of code length that
could quickly produce numerical problems and computational inefficiencies due to the large
number of variables. The approximation is achieved by either reducing the set of the feature
vectors, using Taylor series and taking advantage of the properties of the likelihood function
which is an even and exchangeable function.

5.1 Revisiting the CDMA Model
The CDMA model will be expressed in terms of the matrix equation shown in (74). For
simplicity, we will assume that all the variable Q, g⃗ and b⃗ are real and binary antipodal. The
system is assumed to be balanced, with energy per symbol E. The code matrix is an L×U
matrix. The noise n⃗k is now a real Gaussian random vector with zero mean and correlation
matrix N0/2 I. The observation r⃗k = y⃗k/

√
N0/2 is also defined as a real vector.

y⃗k =

√
E
L

G Q b⃗k + n⃗k

G = diag(⃗g)
(74)

These variables are averaged using the following weights for g⃗, b⃗ and Q.

ρ =
1
2L

P(⃗b) =
1
2L ,

P(Q) =
e−βτ(Q)

∑C e−βτ(C)

(75)

Using the key propositions and definitions discussed in section 4, we find that our likelihood
model is given by equations (76) through (78).

λ (⃗rk|H = {L,U}) = e−⃗rH
k r⃗k/2

(π N0)L/2 ∑
a⃗

e−γc∥⃗a∥2
α (⃗a,β )

L−1

∏
i=0

cosh(
√

2γc Re{ri,k} ai) (76)

α (⃗a,β ) = ∑
τ

∑
C∈Sa⃗,τ

e−βτ(C)

W (77)
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lim
β→∞

α (⃗a,β ) =


0 for a⃗ ̸= a⃗⋆

|Sa⃗,τmin|
∑a⃗∈{⃗a⋆} |Sa⃗,τmin|

for a⃗ = a⃗⋆
(78)

5.2 Classification Using a Single Feature Vector
A distinctive characteristic of the Sylvester’s construction (79) is having a row and column of
ones. A feature vector derived from the product C 1⃗ (79) provides a simple way to classify
CDMA signals because it reduces the complexity of equation (76).

a⃗⋆ = [L,0,0, ...0]T

α (⃗a⋆,∞) = p⃗a⋆
(79)

The average likelihood function of such scheme reduces to the following expression:

λ (⃗rk|H = {L,U}) = e−⃗rH
k r⃗k/2

(π N0)L/2 e−γcL2
p⃗a⋆

L−1

∑
i=0

cosh(L
√

2γc r∗i,k) (80)

The construction of the likelihood ratio between hypotheses H1 = {2L,2L} and H2 =
{L,L} is a simple ratio of hyperbolic cosine functions. The terms containing the energy of the
vectors and N0 are cancelled out. The formula requires to give a special attention should be
given to the format of the observation as either 2L×2L or L×L CDMA.

λ (⃗rk|2L)
λ (⃗r′k ,⃗r

′
k+1|L)

=
∑

2L−1
i=0 cosh(

√
2γc1 2 L ri,k)

∑
L−1
i=0 cosh(

√
2γc0 L r′i,k)∑

L−1
i=0 cosh(

√
2γc0 L r′i,k+1)

H1
≷
H0

η (81)

Figure 15 through 17 show the ROC curves for detecting CDMA of various code lengths
using the provided simplification. The plots are based on 2000 tests, with 128 chips/test, using
frame asynchronous symbols and plotted for several Total-SNR values. For small code lengths,
the feature vector (79) appears to be relevant in the classification of classes, but as the code
length increases, the performance of the classifier is degraded under the same amount of samples.
This degradation occurs presumably for two reasons: 1. classifying higher code lengths at the
same total-SNR requires more samples and 2. This feature (79) becomes less significant as the
code length increases.

The CDMA classifier represented by the rule in (81) can be interpreted as follows. Within a
single frame of L chips, the classifier must find a single spike of amplitude proportional to L
and probability p⃗a⋆ . This rule is only valid under the assumption of fully-loaded, small code
lengths CDMA.
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Fig. 15 Single Feature Detection: ROC {4,4} versus {2,2}
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Fig. 16 Single Feature Detection: ROC {16,16} versus {8,8}
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Fig. 17 Single Feature Detection: ROC {32,32} versus {16,16}
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5.3 Taylor’s Approximation
The first consideration in approximating the average likelihood is to select the proper sample size.
A sample size of K chips must be divisible by the value of the code length of all the hypotheses,
so each hypothesis contains an integer number of symbols K/L. Under this assumption, the
terms ∏

K/L−1
k=0 e−⟨⃗rk ,⃗rk⟩/2 and ∏

K/L−1
k=0 (πN0)

L/2 are common factors to each hypothesis and can
be neglected if necessary. For convenience, the energy term of the observation is kept.

K/L−1

∏
k=0

λ (⃗rk|H ) =
K/L−1

∏
k=0

∑
a⃗∈{⃗a⋆l }

α (⃗a,∞)e∥⃗rk∥2−γc∥⃗a∥2
L−1

∏
i=0

cosh(
√

2γc ri,k ai) (82)

The product of the hyperbolic cosine functions can be approximated using (83). The
likelihood expression results in exponential terms that depends on the absolute value of each
observation ri,k. In both approximations, there is a e±1 term that can be neglected because it is
a common factor to all the likelihood functions.

L−1

∏
i=0

elog(cosh(
√

2γc ri,k ai)) ≈

{
e∑

L−1
i=0

√
2γc abs(ri,k) ai−1 for γc ≫ 1

e∑
L−1
i=0 γcr2

i,k a2
i +1 for γc ≪ 1

(83)

The approximation for low values of γc did not have a significant improvement on the
classification, so only the approximation for γc ≫ 1 was considered regardless of the value of
γc. Combining (82) and (83) under the assumption of γc ≫ 1 result in:

K/L−1

∏
k=0

λ (⃗rk|H ) =
K/L−1

∏
k=0

∑
a⃗∈{⃗a⋆l }

e−∥abs(⃗rk)−
√

2γca⃗∥2/2−log(α (⃗a,∞)). (84)

Using the log-likelihood instead of the likelihood provides further simplification. The log-
sum of exponents in (84) can be replaced by choosing the maximum value of all the exponents
in the sum.

log(∑
l

eωl)≈ max(ωl)

ωl =−∥abs(⃗rk)−
√

2γc⃗al∥2/2+ log(α (⃗al,∞))
(85)

With ∥⃗a∥2 = L U and ∥⃗rk∥2 constant, the maximum value of ωi depends on the correlation
of a⃗ and abs(⃗rk) and the coefficient α (⃗a,∞). Not much simplification can be applied to the
likelihood coefficient other than investigating its behavior through actual calculations. This
behavior is shown in Figure 18 and shows the values of α (⃗a,∞) bounded by the red and the
blue graphs as the code length increases. Our approach ignores the effects of these coefficients
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because bounds are difficult to assess. The approach also relying exclusively on the correlation
term for approximating the likelihood function.

Fig. 18 Boundaries of Minimum and Maximum Coefficients vs. log(L)

A given feature vector a⃗⋆ and all its permutations qualify as features for classification. This
fact presents a problem because the number of permutations becomes large for higher code
lengths causing the algorithm to be computationally inefficient when computing (95). For
example, a⃗⋆ = [4,4,0,0,0,0,0,0]T is a feature vector under hypothesis H = {8,8}, but also
all its 8!/((8−2)!2!) = 28 permutations. In this case, there are two distinct vector coefficients.
In order to deal with this problem, we take advantage of a Computer Sciences theorem known
as the Maximum Scalar Product.
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Proposition 5.1 If x⃗ = {xi}L and y⃗ = {xi}L, and P is an arbitrary L×L permutation matrix,
then the maximum scalar product between x⃗ and P y⃗ is given by:

max(⃗xT P y⃗) =
L−1

∑
i=0

xσ(i) yπ(i)

xσ(i) ≤ xσ(i+1)

yπ(i) ≤ yπ(i+1)

(86)

where σ(i) and π(i) represent permutations of the ith element with i ∈ {0,1,2, ...,L−2}.

Proof 5.1 Let’s assume that the sorted vectors are given by x⃗(σ) = {x′i}L and y⃗(π) = {y′i}L. We
claim that:

x⃗T
(σ) y⃗(π) ≥ x⃗T y⃗ (87)

We define c[k1,k2,...,kn] as:

c[k1,k2,...,kn] =
L−1

∑
i=0

i̸=k1,k2,...,kn

x′i y′i (88)

Then, it can be shown that:

x′k1
y′k1

+ x′k1
y′k1

+ c[k1,k2] ≥ x′k1
y′k2

+ x′k2
y′k1

+ c[k1,k2] (89)

is true since
x′k1

(y′k1
− y′k2

)+ c[k1,k2] ≥ x′k1
(y′k2

− y′k1
)+ c[k1,k2] (90)

For distinct indexes k1 and k2, if y′k1
≥ y′k2

, the inequality above is true because:

x′k1
≥ x′k2

y′k1
− y′k2

≥ 0
(91)

If y′k2
≥ y′k1

, the inequality also remains true because:

x′k1
y′k1

+ x′k2
y′k2

+ c[k1,k2] ≤ x′k1
y′k2

+ x′k2
y′k1

+ c[k1,k2] (92)

and
x′k2

≥ x′k1

y′k2
− y′k1

≥ 0.
(93)
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Once a permutation of two arbitrary indexes is verified, we can proceed with a permutation of
two arbitrary indexes k3 and k4 contained in c[k1,k2].

x′k1
y′k1

+ x′k2
y′k2

+ x′k3
y′k3

+ x′k4
y′k4

+ c[k1,k2,k3,k4] ≥ x′k1
y′k2

+ x′k3
y′k4

+ x′k4
y′k3

+ x′k2
y′k1

+ c[k1,k2,k3,k4]

(94)
The inequality also holds whether xk3 ≥ xk4 or yk3 ≥ yk4 or xk4 ≥ xk3 or yk4 ≥ yk3 . The process
of permuting indexes is continued until the original sorted sequences become two arbitrary
permuted ones: x⃗ = {xi}L and y⃗ = {yi}L. ■

The use of Proposition 5.1 allows estimating the maximum value of (95). The process is
depicted in Figure 19. A sequence of decorrelated samples from the CON decorrelator retains
only the absolute value of the real part. The samples are formatted as an L× 1 vector. The
vector components are sorted and sent into a classifier that computes the likelihood (95) for a
given hypothesis {L,U}. The same process is repeated for multiple hypotheses. Finally, a MAP
classifier determine the class by computing the maximum log-likelihood of all the hypotheses.

max(∑
i
|ri,k|a⋆i ) = R⃗T A⃗

R⃗ = sort(|⃗rk|)
A⃗ = sort (⃗a⋆k)

(95)

Fig. 19 Block Diagram of the Computation of the CDMA Log-Likelihood

5.3.1 Extraction of Features and Coefficients

The feature vectors for a given hypothesis must be extracted and stored in a database prior to
the classification. The extraction process is obtained by using the algorithm in Appendix D.
Sorting the vectors and computing the rate of occurrence reduces the complexity that comes
from dealing with different permutations of the feature vector.
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In the case of perfectly orthogonal codes, the feature vectors could be computed by solving
the Diophantine equations given by (96). The features can take values of ai ∈ {2n}n=0:2:L and
fn is the number of occurrences of ai as given by (40), in other words, ∥⃗a∥2 = L U . The solution
can be obtained by using the Lenstra–Lenstra–Lovász lattice basis reduction algorithm [21].

U−1

∑
i=0

(2n)2 fn = L U

L−1

∑
i=0

fn =U

0 ≤ fn ≤ L, fn ∈ Z∗

(96)

5.4 Averaging over Unbalanced Energy
The expectation over the energies of different users can be computed under the following
assumptions. A nominal energy E per symbol is assigned to each user. The energy variation
from the nominal value is represented as a continuous random variable ∆i such that the energy
per symbol of the user i is given by:

Ei = E (1+∆i)
2. (97)

The model of the CDMA is constructed such that the likelihood can be separated into two
terms: a contribution of a balanced CDMA and a deviation δ⃗ .

y⃗ =
√

E/L C b⃗+ δ⃗ + n⃗ (98)

Under the assumption that ∆ is a diagonal matrix with uniform or normally distributed
coefficients, the vector δ⃗ =

√
E/L C D b⃗ can be represented as Gaussian random vector (using

the Central Limit Theorem) with zero mean and covariance matrix σ2 I. The expected value of
the conditional likelihood on δ⃗ is integrated over the interval (−∞,+∞) as shown in (99). For
simplicity, the integral consider only the terms that depends on δ⃗ .

Eδi{e−γcδ 2
i cosh(

√
2 γcri,kai)}=

e
−γc σ2√

1+2 γc σ2√
1+2 γc σ2

cosh(
√

2 γcri,kai) (99)

Finally, the average likelihood function of the unbalance CDMA is the product of the
average likelihood of the balance CDMA and a factor χ given by (100). The addition of any
additional users with unbalanced energy decreases the likelihood and degrades the accuracy of
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the classifier.

χ(γc σ
2) =

e
−Uγc σ2√
1+2 γc σ2

(1+2 γc σ2)U/2
(100)

5.5 Discussion and Results
Our simulations are based on the code presented in Appendices C to F. Each plot assumes
that the code can appear in any form of permutation, the observation is frame asynchronous
with ε ∈ [0,L− 1]. The tests consist of binary classifications using a MAP approach using
log-likelihood functions. The probability of the classes is uniform, which implies that the same
number of test samples is the same for each class. A samples of K chips is used to compute the
likelihood function. The sample contains K/L symbols.

Figure 20 and 21 show the accuracy versus total-SNR. It was found that a energy density to
noise density ratio, referred as density ratio, serves as a better parameter for all code lengths.
Usage of the density ratio parameter used in Figures 22 through 26 reveals the existence of a
minimum required density ratio value for accurate classification between classes.

The plots are based on 2000 tests with chips lengths that varies between 26 to 216 depending
on the hypothesis. The chip length must ensure that there is enough number of symbols in a
class for make a classification. The required chip length appears to be a function of the symbol
length of the highest class.

The simplified likelihood function does not assume that the codes are perfectly orthogonal.
As long as the code matrix achieves a minimum TSC, the equation should remain valid. The
likelihood function for CDMA can be used to classify CDMA from other signals, given that the
log-likelihood functions of the other signals are provided.

The simulations shown in Figures 27 to 31 demonstrate that the concept can be extended
to underloaded CDMA cases. We may find examples where the classification is ambiguous in
underloaded CDMA cases. A number of active users less that the code length, U ≤ L can be
confused with a L/2×U CDMA especially when the signals are constructed using (50).

A particular case of interest is the classification between orthogonal and non-orthogonal
CDMA matrices. Figure 32 shows the classification between classes {63,63} and {64,64}.
The feature vectors were obtained from a 64×64 Sylvester Hadamard matrix on both cases.
The feature vectors of the 63×63 CDMA were obtained by removing an arbitrary column and
row of the orthogonal matrix. At the moment of testing classes, the Hadamard with 63 rows
was substituted with a Gold Code matrix made from the following polynomials: x8 + x+1 and
x8 + x7 + x2 + x1 +1. Because the Gold Code shares similar features, it was possible to classify
between both classes.
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Fig. 20 Classification {1,1} versus {2,2} Using Symbol SNR

5.5.1 Execution Times

The simulations were conducted in a cloud using Matlab parallel programming. A single test
was assigned to one of 48 available nodes. The estimated time of execution is per test is given
in Table 4. The execution times depend on several variables, such as the data transfer times
between nodes, the number of chips/test and the total number of feature vectors.
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Fig. 21 Classification {2,2} versus {4,4} Using Symbol SNR

Table 4 Execution Times per Test

Hypothesis H0 Hypothesis H1 chips/test features Execution Time (sec.)

{1,1} {2,2} 128 2 3.3

{2,2} {4,4} 128 3 3.6

{4,4} {8,8} 128 5 4.0

{8,8} {16,16} 512 21 30.3

{16,16} {32,32} 2048 56 39.5

{63,63} {64,64} 4032 98337 15268
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Fig. 22 Classification: {1,1} versus {2,2} Using Density Ratio
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Fig. 23 Classification: {2,2} versus {4,4} Using Density Ratio
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Fig. 24 Classification {4,4} versus {8,8}
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Fig. 25 Classification: {8,8} versus {16,16}
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Fig. 26 Classification: {16,16} versus {32,32}
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Fig. 27 Classification of Underloaded CDMA
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Fig. 28 Classification of Underloaded CDMA for Code Length L = 4
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Fig. 29 Classification of Underloaded CDMA for Code Length L = 8
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Fig. 30 Classification of Underloaded CDMA for Code Length L = 16

65

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Fig. 31 Classification of Underloaded CDMA for Code Length L = 32
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Fig. 32 Classification of {63,63}-Gold Code versus {64,64}-Hadamard
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Table 5 CDMA Study Cases

CDMA Schemes BPSK-data QPSK-data

BPSK-code
(spreading)

Type 1
C ∈ {±1}L×U

b⃗ ∈ {±1}U×1

Type 3
C ∈ {±1}L×U

b⃗ ∈ {±1,±i}U×1

QPSK-code
(spreading)

Type 2
C ∈ {±1± i}L×U

b⃗ ∈ {±1}U×1

Type 4
C ∈ {±1± i}L×U

b⃗ ∈ {±1,±i}U×1

6 Extension of the Average Likelihood Method,
Assumptions and Procedures

The development of the likelihood function for L×U CDMA was presented in the previous
section and now it is time to extend the algorithm to all types of CDMA [3] generated from a
combinations of BPSK and QPSK symbols as shown in Table 5. An alternative definition can
be obtained by applying 90 degree rotations to types 2-4, but because C and b⃗ are unknowns,
the selection of the model is a preference rather than a necessity. A 90 degree rotation only
means that the real and imaginary parts of the model can be exchanged without affecting the
modulation type.

The new developments start from reformulating the models in terms of real, binary antipodal
matrices. The three terms of the likelihood function will be computed: the correlation term r⃗T s⃗,
the energy term s⃗T s⃗ of the conditional likelihood and the covariance matrix of each CDMA
model n⃗T n⃗. The observation and noise vectors are given by a combination of the real and
imaginary parts of the CDMA vectors.

6.1 General CDMA Model for Complex Types
The conversion of a complex model to a real model is possible when we use the homomorphic
transformation (101) of complex matrices in CL×L to R2L×2L real matrices.

r⃗R + i⃗rI →
[⃗

rR
r⃗I

]
, n⃗R + i⃗nI →

[⃗
nR
n⃗I

]
QR + iQI →

[
QR −QI
QI QR

] (101)
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For complex codes, we define a new version of the TSC in (102). The variable LQ represents
the effective code length, i.e., the actual code length of the complex model times a factor of
2. The probability of the code matrix (48) in terms of the TSC retains its form. Also, we may
consider extending the sets Sa⃗ and Sa⃗,τ to include complex codes in the form of block matrices.

τ(Q) = ∥QT ·Q∥2
F −L2

Q · rank(Q) (102)

Definition 6.1 The subset Sa⃗+ ,⃗a− of matrices Q = Q++ iQ− with Q+ and Q− ∈ {±1}L×U is
defined as:

Sa⃗+ ,⃗a− = {Q | a⃗+ = Q+⃗1 and a⃗− = Q−⃗1 with (⃗a+)i ≥ 0 and (⃗a−)i ≥ 0 }. (103)

Definition 6.2 The subset Sa⃗+ ,⃗a−,τ is defined as:

Sa⃗+ ,⃗a−,τ = {Q | Q ∈ Sa⃗+ ,⃗a− and τ(Q) = τ}. (104)

The next two properties will allow simplifying the CDMA model in terms of binary antipodal
matrices. Both properties are used in the development the average likelihood for types 2 and 4.

X =

[
I I

−I I

]
, X−1 =

1
2

XT (105)

X ·
[

QR −QI
QI QR

]
·X−1 =

[
QR −QI
QI QR

]
(106)

6.2 Type 3 CDMA Average Likelihood
The type 3 CDMA Average Likelihood is very simple. We start with the block matrix model
in (107). There are two orthogonal equations of interest, one for y⃗R and the other for y⃗I . By
treating the real and imaginary part as independent equations, the problem can be divided in
two sets of orthogonal Type 1 CDMA under the assumption of uncorrelated noise. Matrices
GR1 and GR2 are two diagonal, binary-antipodal matrices that has the possible sign variations
of the real and imaginary parts of the transmit CDMA signal.[⃗

yR
y⃗I

]
=

√
Es

L

[
GR1 000

000 GR2

] [
QR 000
000 QR

] [⃗
bR

b⃗I

]
+

[⃗
nR
n⃗I

]
I : y⃗R =

√
E
L

GR1 QR b⃗R + n⃗R

II : y⃗I =

√
E
L

GR2 QR b⃗I + n⃗I

(107)
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The average likelihood function for type 3 can be approximated by the product of the
likelihood in (107)-I and (107)-II. Although the approximation assumes that GR1 ̸= GR2, the
simulations show that the assumption is reasonable for detecting type 3 without increasing the
complexity of the average likelihood function.

λT 2(⃗rR + i⃗rI|H ) = λT 1(⃗rR|H ) ·λT 1(⃗rI|H ) (108)

An empirical calculation of the likelihood using symbolic algebra reveals that the true
likelihood is a product of hyperbolic cosine terms that depend on r⃗T

R a⃗R, r⃗T
I a⃗I , r⃗T

I a⃗R and r⃗T
I a⃗I .

The exact equation ensures that GR1 = GR2. This relationship is not significant at the time of
classifying CDMA in terms of the code length and number of users for type 3, so it can be
relaxed to GR1 ̸= GR2.

6.2.1 Discussion and Results

The experiments assume that the code matrices appear in any form of column and row permu-
tation and the correlator process frame asynchronous samples. The complex noise power is
N0/2, so the real and imaginary components contribute with half of the noise N0/4. Type 3
CDMA uses the same features for Type 1 CDMA. The average likelihood is the product of two
orthogonal Type 1 CDMA, so the performance is expected to be similar. Figure 33 shows a
comparison between the classification of the classes {2,2} and {4,4}. The accuracy of type 3
has a similar profile, but shifted backward by approximately 3 dB.

The plots in Figure 35 were based on a variable chips lengths that varies between 26 to
216 depending on the hypothesis. The chip length must ensure that there is enough number of
symbols in a class for make a classification.

A characteristic feature of these plots is the sudden break in the performance of the classifier.
The minimum density ratio appears to be a function of the highest code length hypothesis in the
classifier. Figure 34 shows an approximate relationship between the 75 percent accuracy point
and versus the highest code length in a binary classification. (The data was interpolated from
the markers in 35 with the code length is shown in the legend.) An interpolation on the graph
suggests that a {16,16} versus {24,24} classifier requires a minimum density ratio of 6.14 dB.
The experimental value agrees with this prediction.
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Fig. 33 Classification of {1,1} versus {2,2} for Types 1 and 3
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Fig. 34 Classifier Breaking Points for Type 3
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Fig. 35 Classification of {L,L} versus {L/2,L/2} for log2(L) between 2 and 7
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6.3 Type 2 CDMA Average Likelihood
The average likelihood of a type 2 CDMA can also be expressed in terms of the type 1
likelihood under simplifying assumptions. The model in (109) resembles a type 1 CDMA with
the hypothesis H = {2L,U} where U represents either the number of variables in the real or
imaginary part. Its block matrix G consists of four diagonal matrices with symbols (GR)i,i and
(GI)i,i ∈ {0,±1}. [⃗

yR
y⃗I

]
=

√
Es

2L

[
GR1 −GI1
GI2 GR2

] [
QR −QI
QI QR

] [⃗
bR

0⃗

]
+

[⃗
nR
n⃗I

]
(109)

The complex code matrices in this study were derived from Hadamard codes. The construc-
tion was made by selecting a Hadamard matrix and multiplying it by a permutation involutory
matrix to form the imaginary part. A 90 degree rotation in the complex plane might be required
in order to express the code according to the definition in Table (5).

Definition 6.3 A permutation involutory matrix has the following properties:

P ·P = I,

P 1⃗ = 1⃗,
Pi, j ∈ {0,1}.

(110)

Proposition 6.1 If H is a real Hadamard matrix and P is a permutation involutory matrix with
P ̸= I, then the code Q = H + iP H is a complex Hadamard matrix.

Proof 6.1 This can be verified by calculating QH Q = (2L)I. ■

Based on the previous proposition, one can derive matrices QR and QI satisfying the
condition imposed in Table 5. Setting the sign of the amplitude vectors to GI1 = GI2 = 000,
GR1 ̸= GR2 = 000 results in two orthogonal sets of equations given by: (111).

I : y⃗R =

√
E
2L

GR1 QR b⃗R + n⃗R

II : y⃗I =

√
E
2L

GR2 QI b⃗R + n⃗I.

(111)

Without entering in details, the average likelihood approximation of type 2 is identical to the
type 3 already discussed.

λT 3(⃗rR + i⃗rI|H ) = λT 2(⃗rR + i⃗rI|H ) (112)
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A computation using symbolic algebra reveals that the true likelihood function of type 2 is
a hyperbolic product of the terms: r⃗T

R a⃗R, r⃗T
I a⃗I , r⃗T

I a⃗R and r⃗T
I a⃗I . The exact equation characterizes

a true type 2 signals that satisfies the condition GR1 = GR2. This likelihood would be useful for
differentiating between CDMA types; however, the relationship is not essential for classifying
CDMA in terms of the code length and number of users.

6.3.1 Discussion and Results

Figures 36 to 38 show the classification of type 2 signals using 200 tests, and chip/test that
varies from 28 to 216. The tests assume that the code matrices comes in any form of column and
row permutation and the correlator process frame asynchronous samples. The complex noise
power is N0/2, so the real and imaginary components contribute with half of the noise N0/4.
The graphs are similar to the type 3 CDMA classification that was already discussed.

Figure 37 shows several classifiers and the characteristic breaking points for fully-loaded
balanced CMDA. Figures 39 to 38 shows the classification of unbalanced CDMA with variances
in the amplitudes σ2 = {0, .1, .25}. The effect on amplitude unbalance on the accuracy is more
evident in the classification of higher code lengths since its effect grows exponentially as a
function of the number of users according to (100).
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Fig. 36 Classification of {L,L} versus {L/2,L/2} for log2(L) between 2 and 7
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Fig. 37 Classification of {1,1} versus {2,2} for Types 1 and 3
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Fig. 38 Classification of {1,1} versus {2,2} for Types 1 and 3

78

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



Fig. 39 Classification of {1,1} versus {2,2} for Types 1 and 3
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6.4 Type 4 CDMA Average Likelihood
The type 4 CDMA model can be viewed as a type 1 CDMA with twice the code length and
number of users. The model is subject to code matrices that follows the structure given by
(113). [⃗

yR

y⃗I

]
=

√
Es

2L

[
GR1 −GI1
GI2 GR2

] [
QR −QI

QI QR

] [⃗
bR

b⃗I

]
+

[⃗
nR

n⃗I

]
(113)

If the assumptions GR1 = GR2, GI1 = GI2 are enforced, then the sets Sa⃗R ,⃗aI ,τ need to be
considered in the development of the likelihood. The feature vectors a⃗R = QR⃗bR −QI⃗bI and
a⃗I = QI⃗bR +QR⃗bI have positive coefficients by definition. The product over the block matrix
G would restore the signature ±1 to each feature vector, which is a 0 or a 180 degree rotation
in the complex plane. We should also allow these block matrices to implement a 90 and -90
degree rotations because such rotations do not change the modulation type. In all these cases,
the diagonal matrices GR1 and GI1 can take values {0,+1,−1} according to the rotation in
the complex plane such that any combination given by ±(⃗aR) j ± i(⃗aI) j or ±(⃗aI) j ± i(⃗aR) j is
included in our averaging process.

The conversion to a model made of binary antipodal variables (114) is obtained by multiply-
ing the matrix X in equation (105) and applying the property discussed in (106). Vectors [⃗bR ;⃗bI],
[⃗nR; n⃗I] and [⃗rR ;⃗rI] are redefined using the following convention: x⃗− = −⃗xR + x⃗I , x⃗+ = x⃗R + x⃗I
to produce the binary antipodal vectors in (115). The simplest model is obtained by setting
GI1 = GI2 = 0.

X
[⃗

yR
y⃗I

]
=

√
Es

2L
X
[

GR1 000
000 GR1

]
X−1 X

[
QR −QI
QI QR

]
X−1 X

[⃗
bR

b⃗I

]
+ X

[⃗
nR
n⃗I

]
(114)

[⃗
y+
y⃗−

]
=

√
Es

2L

[
GR1 000

000 GR1

] [
QR −QI
QI QR

] [⃗
b+
b⃗−

]
+

[⃗
n+
n⃗−

]
(115)

The average likelihood for type 4 CDMA (116) is a special case of type 1 CDMA with
twice the code length and number of users:

λT 4(⃗rR + i⃗rI|H = {L,U},N0/2)≈ λT 1(R⃗|H = {2L,2U},N0), (116)

where R⃗ = [⃗r+;⃗r−], N⃗ = [⃗n+; n⃗−], E{N⃗N⃗T}= N0. The real component of the noise is assumed
to satisfy E{⃗nR⃗nT

R}= E{⃗nI⃗nT
I }= N0/2.
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6.4.1 Alternative Model

We define g⃗+ and g⃗− to be binary antipodal vectors {±1}L satisfying the following relationship:

g⃗+ = g⃗R + g⃗I

g⃗− =−g⃗R + g⃗I

GR1 = diag(⃗gR)

GI1 = diag(⃗gI).

(117)

We can calculate the correlator term of the conditional likelihood using (113) with GR1 = GR2
and GI1 = GI2 and take advantage of the Proposition 4.2.[⃗

r+
r⃗−

]T [GR1 −GI1
GI1 GR2

] [
QR −QI
QI QR

] [⃗
b+
b⃗−

]
(118)

The following form of the correlation provides what is necessary to compute the average over
the block matrix G. [⃗

g+
g⃗−

]T [diag(−⃗rI) diag(⃗rR)
diag(⃗rR) diag(⃗rI)

] [
QR −QI
QI QR

] [⃗
b+
b⃗−

]
(119)

Since the block matrix G is orthonormal, the energy term remains the same:∥∥∥∥[GR1 −GI1
GI1 GR2

][
QR −QI
QI QR

] [⃗
b+
b⃗−

]∥∥∥∥2

=

∥∥∥∥[QR −QI
QI QR

] [⃗
b+
b⃗−

]∥∥∥∥2

=

∥∥∥∥[⃗aR
a⃗I

]∥∥∥∥2

. (120)

The difference between the type 4 model in (119) and the type 1 correlation term in (56) is
the substitution of diag(⃗r) with the following matrix:

diag(⃗rR)→ D =

[
diag(−⃗rI) diag(⃗rR)

diag(⃗rR) diag(⃗rI)

]
. (121)

Using a development a similar treatment used in type 1 CDMA, we can arrive to the average
likelihood function shown in equations (122) and (123).

λT 4(R⃗|H = {L,U}) = e−R⃗T R⃗/2

(π N0)L/2 ∑
a⃗

e−γc∥⃗a∥2
α (⃗a,β )

2L−1

∏
i=0

cosh(
√

2γc ∑
j

D∗
i, j a j) (122)
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with R⃗ = [⃗r+;⃗r−], a⃗ = [⃗aR; a⃗I] and

α (⃗a,β ) = ∑
τ

∑
Q∈Sa⃗R ,⃗aI ,τ

e−βτ(Q)

W

γc =
E

2LN0
.

(123)

The same formula can be use for Type 2 CDMA, which can be seen as a special form of
type 4 CDMA with b⃗I = 0.

6.4.2 Discussion and Results

The first task in generating simulations was the extraction of the feature vectors defined in
(104). It was found that the composite feature vector A⃗ = [⃗aR; a⃗I] has the same features for a
corresponding Type 1 of size {2L,2U}. This finding supports our approximation of a L×U
Type 4 CDMA likelihood to a Type 1 2L×2U CDMA. The experiments also assume that the
code matrices comes in any form of column and row permutation and the correlator process
frame asynchronous samples. The noise power of the model is N0/2 and consists of the
contribution of the real and imaginary components under the assumption of uncorrelated noise.
Only the a short range of density ratios is considered due to the long execution time.

Figure 40 resembles the same characteristic features of the previously discussed classifiers.
It seems that all complex types of CDMA can be viewed as a different way of encoding binary
antipodal symbols. The average likelihood under the unbalanced energy assumption degrades
the performance of the classifier as expected.
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Fig. 40 Classification of {L,L} versus {L/2,L/2} for log2(L) between 2 and 7
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7 Conclusion
The knowledge on modulation classification applied to CDMA was limited the use of cyclosta-
tionary features in neural network prior to this research. Prior state of the art was limited to
single user CDMA signals and relied entirely on the cyclostationary properties to detect code
lengths by using a feature based neural network with multiple layers. Such theory cannot be
easily extended to the classification of multiuser CDMA signals.

A generalized likelihood approach was considered as a potential method for classifying
CDMA. The main weakness of this approach is the costly estimation of the code matrices and
the data vectors, especially if one consider the estimation of the parameters under the wrong
hypothesis.

Th main contribution of the research presented in this document was able to provide a
classification algorithm for multiuser CDMA using the average likelihood. Due to the model
limitations, the algorithm cannot be applied to single user CDMA. However, by developing
decision theoretic approach, we ensure that the classification of multiuser CDMA is optimal
by virtue of the theory. Although the approximation of the average likelihood may be turn the
classifier in a suboptimal method, it is the only available method at this moment.

The construction of the average likelihood function was based on the following assumptions:

■ chip-synchronous,

■ frame-asynchronous,

■ arbitrary codes achieving lower bound TSC,

■ unknown data vector,

■ unknown permutations,

■ fully-loaded,

■ underloaded,

■ balanced, and

■ unbalanced energies.

The development of the average likelihood for CDMA was possible when key concepts such
as the probability of the code matrix and key properties such as the average of the exponential
functions were formulated. Averaging over a weight that depends on the TSC behaves as a
filtering process where matrices with low TSC are preferred over all other matrices. By defining
a precision parameter β , we are able to control the width of the probability of code matrices.
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Taking the limit of β to infinity allows finding a simplified likelihood function in terms of
the feature vectors, which are unsigned versions of the product between the code matrix and
the data vector. This simplification eliminates many negligible terms that have no significant
contribution to the average likelihood function. Furthermore, a Taylor simplification reduces
the likelihood to a sum of exponentials. Also log-likelihood expression of a sum of exponentials
can be simplified to the selection of the maximum value of dot product of the sorted versions of
the feature vectors a⃗⋆ and the amplitude of the observation vectors abs(⃗rk).

The proposed method produced desirable results for classifying CDMA with code lengths
between 2 and 128. The proposed approximation avoids multiple problems such as large
number of unknowns, numerical overflow, and intractability issues derived from an increasingly
large number of row permutations in the code matrix. Extending the classifier to higher code
lengths is always possible; however, the implementation will require longer processing times
for acquiring the feature vectors and computing the average likelihood.

The existence of a minimum energy-density to noise-density ratio is a characteristic feature
of the newly developed CDMA classifiers. The classifier’s performance below this limit
approaches to 50 percent accuracy, with a quick transition to 100 percent accuracy. The slope
of the accuracy versus density ratio varies depending on the number of samples per test. The
curve is steeper with higher samples per test. In machine learning terms, this could be mean
that the slope of a sigmoid function depends on the number of test samples. In information
theoretic terms, this behavior could imply that the capacity of the channel has been exceeded to
a point where it is impossible to identify the modulation type of the signal. These hypotheses
would require verification.

These concepts can be extended complex types of CDMA. The entire complex model can
be mapped into a pure real CDMA system that has binary antipodal symbols. Types 2 and 3
CDMA turn into two orthogonal sets of type 1 CDMA. Type 4 CDMA, under the assumption of
perfectly orthogonal signals can be represented as a type 1 CDMA with twice the code length
and twice the number of users. Because of this, the same average likelihood function can be
applied to all types of CDMA with minor modifications.

CDMA signals may resemble Gaussian noise. However, framing the signal at the proper
code length, removing the polarity and sorting the vector coefficients of the observation remove
the random nature of CDMA and make the signal completely detectable. In the case of one
user, the model becomes equivalent to an ordinary BPSK or QPSK signal. In CDMA cases
where the number of users less or equal than half of the code length, the classification may fail
when compared to a signal with half of the code length due to way that Hadamard codes of
code length L can be constructed from codes with code lengths of L/2.
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7.1 Future Work
There are many scenarios for detecting CDMA that can be explored. Several scenarios such as
multipath or chip asynchronous CDMA can be studied and tested in the field. A more ambitious
development includes the estimation of the code matrix using a average likelihood and the
automation of a demodulation process for CDMA.
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Appendix A Mathematica Code for Com-
puting the Average Likelihood
Function

(* CDMA LIKELIHOOD FUNCTION *)(* CDMA LIKELIHOOD FUNCTION *)(* CDMA LIKELIHOOD FUNCTION *)
(* 1. Code Length and Number of Users *)(* 1. Code Length and Number of Users *)(* 1. Code Length and Number of Users *)
L = 2;L = 2;L = 2; U = L;U = L;U = L;

(* 2. Code Matrix Defined *)(* 2. Code Matrix Defined *)(* 2. Code Matrix Defined *)
H = Array[Subscript[c,#1−1,#2−1] &,{L,L}];H = Array[Subscript[c,#1−1,#2−1] &,{L,L}];H = Array[Subscript[c,#1−1,#2−1] &,{L,L}];

(* 3. Data Vector Defined *)(* 3. Data Vector Defined *)(* 3. Data Vector Defined *)
B = Array[Subscript[b,#−1,K]&,{L,1}];B = Array[Subscript[b,#−1,K]&,{L,1}];B = Array[Subscript[b,#−1,K]&,{L,1}];

(* 4. Observation Vector Defined *)(* 4. Observation Vector Defined *)(* 4. Observation Vector Defined *)
R = Array[Subscript[r,#1−1,K]&,{L,1}];R = Array[Subscript[r,#1−1,K]&,{L,1}];R = Array[Subscript[r,#1−1,K]&,{L,1}];

(* 5. Correlation Term *)(* 5. Correlation Term *)(* 5. Correlation Term *)
X = R.H.B;X = R.H.B;X = R.H.B;
X = Expand[X [[1,1]]]X = Expand[X [[1,1]]]X = Expand[X [[1,1]]]

(* 6. TX Signal and Energy *)(* 6. TX Signal and Energy *)(* 6. TX Signal and Energy *)
Y = (H.B);Y = (H.B);Y = (H.B);
ET = (Y .Y );ET = (Y .Y );ET = (Y .Y );
ET = Expand[ET];ET = Expand[ET];ET = Expand[ET];
ET = ET/.v_∧2->1;ET = ET/.v_∧2->1;ET = ET/.v_∧2->1;
ET = ET[[1,1]]ET = ET[[1,1]]ET = ET[[1,1]]

(* 7. Total Squared Correlation *)(* 7. Total Squared Correlation *)(* 7. Total Squared Correlation *)
H2 = H.H;H2 = H.H;H2 = H.H;
V2 = 0;V2 = 0;V2 = 0;
For[i1 = 1, i1 ≤ L, i1++,For[i1 = 1, i1 ≤ L, i1++,For[i1 = 1, i1 ≤ L, i1++,
For[i2 = 1, i2 ≤ L, i2++,For[i2 = 1, i2 ≤ L, i2++,For[i2 = 1, i2 ≤ L, i2++,
If[i1 ̸= i2,If[i1 ̸= i2,If[i1 ̸= i2,
V2 = V2+H2[[i1, i2]]∧2V2 = V2+H2[[i1, i2]]∧2V2 = V2+H2[[i1, i2]]∧2
]]]
];];];
];];];
w1 = Expand[V2]/.{_∧2 → 1}/.{_∧4 → 1};w1 = Expand[V2]/.{_∧2 → 1}/.{_∧4 → 1};w1 = Expand[V2]/.{_∧2 → 1}/.{_∧4 → 1};
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FML = w1FML = w1FML = w1

(* 8. Normalization Constant of Probability of the CDMA Code *)(* 8. Normalization Constant of Probability of the CDMA Code *)(* 8. Normalization Constant of Probability of the CDMA Code *)
Z = Join[Flatten[H]];Z = Join[Flatten[H]];Z = Join[Flatten[H]];
If[L ̸= 1,If[L ̸= 1,If[L ̸= 1,
W1 = Exp[−β ∗w1];W1 = Exp[−β ∗w1];W1 = Exp[−β ∗w1];
For[i = 1, i ≤ Length[Z], i++,For[i = 1, i ≤ Length[Z], i++,For[i = 1, i ≤ Length[Z], i++,
If[!NumberQ[Z[[i]]],If[!NumberQ[Z[[i]]],If[!NumberQ[Z[[i]]],
rl = {Z[[i]]→ z};rl = {Z[[i]]→ z};rl = {Z[[i]]→ z};
W1 = W1/.rl;W1 = W1/.rl;W1 = W1/.rl;
W1 = Sum[W1,{z,{−1,1}}]W1 = Sum[W1,{z,{−1,1}}]W1 = Sum[W1,{z,{−1,1}}]
];];];
],],],
W1 = Exp[−β ];W1 = Exp[−β ];W1 = Exp[−β ];

(* 9. Conditional likelihood *)(* 9. Conditional likelihood *)(* 9. Conditional likelihood *)
CL = Exp[Sqrt[2γ]∗X − γ ∗ET−β ∗FML]CL = Exp[Sqrt[2γ]∗X − γ ∗ET−β ∗FML]CL = Exp[Sqrt[2γ]∗X − γ ∗ET−β ∗FML]

(*10.AveragingtheConditionalLikelihood*)(*10.AveragingtheConditionalLikelihood*)(*10.AveragingtheConditionalLikelihood*)
AL = CL;AL = CL;AL = CL;
Z = Join[Sqrt[1]∗Flatten[H],Flatten[B]]Z = Join[Sqrt[1]∗Flatten[H],Flatten[B]]Z = Join[Sqrt[1]∗Flatten[H],Flatten[B]]
For[i = 1, i ≤ Length[Z], i++,For[i = 1, i ≤ Length[Z], i++,For[i = 1, i ≤ Length[Z], i++,
If[!NumberQ[Z[[i]]],If[!NumberQ[Z[[i]]],If[!NumberQ[Z[[i]]],
rl = {Z[[i]]→ z};rl = {Z[[i]]→ z};rl = {Z[[i]]→ z};
AL = AL/.rl;AL = AL/.rl;AL = AL/.rl;
If [NumberQ [Z[[i]]/.{c_,_ → 0}] ,If [NumberQ [Z[[i]]/.{c_,_ → 0}] ,If [NumberQ [Z[[i]]/.{c_,_ → 0}] ,
AL = Sum[AL,{z,{−1,1}}],AL = Sum[AL,{z,{−1,1}}],AL = Sum[AL,{z,{−1,1}}],
AL = 1/2∗Sum[AL,{z,{−1,1}}]AL = 1/2∗Sum[AL,{z,{−1,1}}]AL = 1/2∗Sum[AL,{z,{−1,1}}]
];];];
];];];
];];];

(* 11. Expansion of the Exponents *)(* 11. Expansion of the Exponents *)(* 11. Expansion of the Exponents *)
ALS = AL/.Exp[aaa_] :→ Exp[Expand[aaa]];ALS = AL/.Exp[aaa_] :→ Exp[Expand[aaa]];ALS = AL/.Exp[aaa_] :→ Exp[Expand[aaa]];
rule1 = {Exp [Plus[ex1__]+ ex2__∗ rs_,K] :→ Exp[Plus[ex1]]∗Subscript[P,s]∧Times[ex2]} ;rule1 = {Exp [Plus[ex1__]+ ex2__∗ rs_,K] :→ Exp[Plus[ex1]]∗Subscript[P,s]∧Times[ex2]} ;rule1 = {Exp [Plus[ex1__]+ ex2__∗ rs_,K] :→ Exp[Plus[ex1]]∗Subscript[P,s]∧Times[ex2]} ;
ALS = ALS//.rule1;ALS = ALS//.rule1;ALS = ALS//.rule1;
rule2 = {Exp [ex2__∗ rs_,K] :→ Subscript[P,s]∧Times[ex2]} ;rule2 = {Exp [ex2__∗ rs_,K] :→ Subscript[P,s]∧Times[ex2]} ;rule2 = {Exp [ex2__∗ rs_,K] :→ Subscript[P,s]∧Times[ex2]} ;
ALS = ALS//.rule2;ALS = ALS//.rule2;ALS = ALS//.rule2;
rule3 = {Subscript[P,s_]∧Times[ex2__] :→ Cosh[Times[ex2]∗Subscript[r,s,K]]rule3 = {Subscript[P,s_]∧Times[ex2__] :→ Cosh[Times[ex2]∗Subscript[r,s,K]]rule3 = {Subscript[P,s_]∧Times[ex2__] :→ Cosh[Times[ex2]∗Subscript[r,s,K]]
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+Sinh[Times[ex2]∗Subscript[r,s,K]]};+Sinh[Times[ex2]∗Subscript[r,s,K]]};+Sinh[Times[ex2]∗Subscript[r,s,K]]};
ALS = ALS//.rule3;ALS = ALS//.rule3;ALS = ALS//.rule3;
ALS = Expand[ALS]ALS = Expand[ALS]ALS = Expand[ALS]

(* 12.GENERAL FORM OF THE 2x2 CDMA Likelihood Function *)(* 12.GENERAL FORM OF THE 2x2 CDMA Likelihood Function *)(* 12.GENERAL FORM OF THE 2x2 CDMA Likelihood Function *)
ALSS = Expand[ALS/W1]ALSS = Expand[ALS/W1]ALSS = Expand[ALS/W1]

4e−8β

8+8e−8β
+

4e−4γ Cosh[2
√

2
√

γr0,K]
8+8e−8β

+
4e−4γ Cosh[2

√
2
√

γr1,K]
8+8e−8β

+
4e−8β−8γ Cosh[2

√
2
√

γr0,K]Cosh[2
√

2
√

γr1,K]
8+8e−8β

(* 13. Precision to Infinity *)(* 13. Precision to Infinity *)(* 13. Precision to Infinity *)
LF1 = ALSS/.{β → ∞}LF1 = ALSS/.{β → ∞}LF1 = ALSS/.{β → ∞}
1
2e−4γCosh

[
2
√

2
√

γr0,K

]
+ 1

2e−4γCosh
[
2
√

2
√

γr1,K

]
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Appendix B Computation of the CDMA
Average Likelihood Coefficients

1 %------------------------------------------------------------------------
2 % Calculation of the numerator of the alpha parameters using formula.
3 % A. Vega, Last Modified: October 8, 2013
4 % inputs: a = vector vector, U = number of users
5 % output: matrix = [ TSC, occurrences ]
6 % formatted output = occurrences * e^(beta*TSC)
7 %------------------------------------------------------------------------
8 function output = alphaParam(a,U)
9 % Ensure positive coefficients

10 a = abs(a);
11 % Code length of the spreading matrix
12 L = length(s);
13 % Calculate possible column permutations such that sum(cols) >= 0
14 colPerm = [];
15 colPerm(1).x(1,:) = ones(1,U);
16 for k1 = 1:floor(U/2)
17 x = ones(1,U);
18 k2 = k1;
19 while( k2 > 0 )
20 x(1,k2) = -1;
21 k2 = k2 - 1;
22 end
23 colPerm(k1+1).x = unique(perms(x),'rows')
24 end
25 % Display possible row vectors
26 if( 0 )
27 for k3 = 1:size(a(:),1)
28 squeeze(a(k3).x(:,:))
29 end
30 end
31 % Construct matrices using row vectors
32 group = abs(U-a)/2+1;
33 elems = zeros(1,U);
34 for k1 = 1:L
35 elems(1,k1) = size(colPerm(group(k1)).x,1);
36 end
37 % This algorithm is inefficient for L>6
38 tic
39 stack = []; mtx = zeros(L,U);
40 start = ones(1,L);
41 while( all(start<=elems) )
42 % Generate Matrix
43 for k1 = 1:L
44 mtx(k1,:) = colPerm(group(k1)).x(start(1,k1),:);
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45 end
46 % Calculate Total Square Correlation
47 tau = 0;
48 h2 = mtx'*mtx;
49 for k1 = 1:L
50 for k2 = 1:L
51 if( k1 ~= k2 )
52 tau = tau + h2(k1,k2)^2;
53 end
54 end
55 end
56 % Store value
57 stack = [stack,tau];
58 %end
59 % This algorithm explores all possible combinations of a row in a matrix
60 % The sum of the row >= 0
61 k2 = 1;
62 while( k2 <= L )
63 c = start(1,k2) + 1;
64 if( c >elems(1,k2) )
65 if( k2 < L )
66 start(1,k2) = 1;
67 k2 = k2 + 1;
68 else
69 start(1,k2) = c;
70 k2 = k2 + 1;
71 end
72 else
73 start(1,k2) = c;
74 k2 = L+1;
75 end
76 end
77 end
78 toc
79 % Count all unique values
80 vals = unique(stack','rows')';
81 svals = zeros(size(vals));
82 for k1 = 1:length(vals)
83 svals(1,k1) = sum(stack==vals(k1));
84 end
85 % Display results
86 [vals',svals'*2^L/2^(sum(s==0))]
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Appendix C Generation of Type 1 CDMA
Signal

1 %------------------------------------------------------------------------
2 % Matlab Code Snippet
3 % Generation of CDMA signals Type 1
4 % Inputs:
5 % L = code length, power of 2, L > 1
6 % U = active users
7 % chips = signal length in chips, multiple of L
8 % delta_var = variance of the amplitude
9 % Outputs:

10 % s = CDMA signal samples
11 %------------------------------------------------------------------------
12 % Generate Code Matrix Type 1
13 h = hadamard(L)/sqrt(L);
14 % Implement Row and Column Permutation
15 r = randperm(L);
16 c = randperm(L);
17 h = h(r,c);
18 h = h(:,1:U);
19 % Generate Data Vector
20 symbols = randsrc(U,chips/L);
21 % GenerateAmplitudevariation
22 if( deltavar ~= 0 )
23 AA = diag(delta_var/U*randn(U,1));
24 else
25 AA = zeros(U);
26 end
27 % CDMA signal
28 s = h*(eye(U)+AA)*symbols;
29 % reformat as a stream
30 s = reshape(s,[size(s,1)*size(s,2),1]);
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Appendix D Feature Extraction Algorithm

1 %------------------------------------------------------------------------
2 % Matlab Code Snippet
3 % Feature Vector Extraction
4 % Inputs:
5 % L = code length
6 % N = size of the histogram
7 % Outputs:
8 % aa = feature vector array
9 % alpha = alpha coefficients

10 %------------------------------------------------------------------------
11 function[ aa, alpha ] = surveyfeat(L,U,N)
12 hL = hadamard(L);
13 fv = zeros(L,0);
14 alpha= zeros(1,0);
15 for k = 1:N
16 % Compute CDMA
17 if( U == L )
18 s = hL*randsrc(L,1);
19 else
20 u = randperm(L);
21 u = u(1:U);
22 s = hL(:,u)*randsrc(U,1);
23 end
24 % Sort entries by absolute value
25 ss = sort(abs(s));
26 % Enter first element
27 if(isempty(fv) )
28 fv = [ ss ];
29 alpha= [ 1 ];
30 else
31 % search closest match
32 done = 0; rindex = 1; cindex = 1;
33 while( done == 0 )
34 if(fv(rindex,cindex) == ss(rindex,1) )
35 % Smart sorting to save time
36 if(rindex == L )
37 % found match, go to next column
38 F(1,cindex) = F(1,cindex) + 1;
39 done = 1;
40 elseif(rindex< L )
41 % go next row and compare
42 rindex = rindex + 1;
43 else
44 % reached end of row
45 if(cindex< size(fv,2) )
46 % go to next column
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47 cindex = cindex + 1;
48 rindex = 1;
49 else
50 % reached last entry, append to end
51 fv = [ fv, ss ];
52 alpha= [ F, 1 ];
53 done = 1;
54 end
55 end
56 elseif(fv(rindex,cindex) >ss(rindex,1) )
57 % found bigger entry
58 if(cindex == 1 )
59 % append at beginning
60 fv = [ ss, fv ];
61 alpha= [ 1, alpha];
62 done = 1;
63 else
64 % append in before the bigger entry
65 fv = [ fv(:,1:(cindex-1)), ss, fv(:,cindex:end) ];
66 alpha= [ F(1,1:(cindex-1)), 1, F(1,cindex:end) ];
67 done = 1;
68 end
69 else
70 % found smaller vector
71 if(cindex == size(fv,2) )
72 % no more vectors found, append at end
73 fv = [ fv, ss ];
74 alpha= [ F, 1 ];
75 done = 1;
76 else
77 % more vectors available , increase indexes
78 cindex = cindex + 1;
79 rindex = 1;
80

81 end
82 end
83 end
84 end
85 end
86 aa = fv;
87 alpha = alpha/sum(alpha);
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Appendix E Calculation of the Average Like-
lihood

1 %------------------------------------------------------------------------
2 % Computation of the log-likelihood per signal
3 % Inputs:
4 % rx = unformatted observation vector with proper length
5 % gam = total energy to noise ratio
6 % L = code length
7 % U = active users
8 % delta_var = variance of the amplitude
9 % Outputs:

10 % llkh = total log-likelihood
11 %------------------------------------------------------------------------
12 % Load feature vectors and alpha coefficients
13 [aa,alpha] = loadfeatures(L,U);
14 % Number of possible delays, frame-asynchronous
15 delayavg = L;
16 % Number of samples assuming multiple of L
17 chips = length(rx);
18 % factor for amplitude variations
19 gammac = gam/chips/U;
20 % log-likelihood per delay per sample
21 dist = zeros(chips/L,delayavg);
22 % factor for amplitude variations
23 logchi = unbalanced_factor(delta_var,L,U,gammac);
24 % Calculate likelihood for different delays
25 for delay = 0:delayavg-1
26 % implement a given delay
27 r_delay = circshift(rx,delay);
28 % For each sample
29 cnt = 1;
30 for k1 = 1:L:lim
31 % Format as a vector assuming code length = L
32 r_vec = r_delay(k1:k1+L-1,1);
33 dist2 = loglikelihood(r_vec,aa,gammac) +log(alpha) +logchi;
34 % feature vector, log sum of exponents
35 dist(cnt,k2+1) = log_sum_exp( dist2 );
36 cnt = cnt + 1;
37 end
38 end
39 % Compute likelihood per delay
40 llkh_delay = sum(dist);
41 % Average over delays
42 llkh_symbols = log_sum_exp(llkh_delay)-log(delayavg);
43 % Sum of log likelihood of all independent symbols
44 llkh = sum(lkh_symbols);
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45 %------------------------------------------------------------------------
46 % Matlab Code Snippet
47 % Computation of the distance term of the likelihood per feature vector
48 % Inputs:
49 % r = unformatted observation vector with length L
50 % gammac = chip level SNR
51 % aa = collection of feature vectors
52 % Outputs:
53 % llkh = log-likelihood per sample
54 %------------------------------------------------------------------------
55 functiondist = loglikelihood( r, aa, gammac )
56 % assuming that feature vector is already sorted
57 % aa = sort(r);
58 rs = sort(abs(real(r)));
59 dist = zeros(1,size(aa,2));
60 for k=1:size(aa,2)
61 dist(1,k) = -1/2*sum((r - sqrt(2*gammac)*aa(:,k)).^2);
62 end
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Appendix F Error Probability Matrix Code

1 %------------------------------------------------------------------------
2 % Matlab Code Snippet
3 % Computation of the error probability matrix
4 % Inputs:
5 % HT = array of hypothesis, column-wise pair { L, U }
6 % Et = total energy, No = noise power
7 % chips = chip length of the signal
8 % L = true code length, U = true active users
9 % delta_var = variance of the amplitude

10 % ntests = number of tests
11 % Outputs:
12 % confmatrix = error probability matrix
13 %------------------------------------------------------------------------
14 % Matlab parallel for loop goes here
15 parfor tests = 1:ntest
16 % Generate a stream of CDMA signals
17 s = randBaseBandSignal('type1',chips,L,U,delta_var);
18 % Transmitted signal (baseband)
19 Es = Et/(chips/L)/U;
20 tx = sqrt(Es)*s;
21 % choose a random delay between 0 and L-1 chips
22 delay = randi([0,L-1],1,1);
23 tx = circshift(tx,delay);
24 % AWGN channel
25 n = noise(NoReal, length(tx) );
26 rx = tx + n;
27 % For all the hypothesis test in array HT
28 for k2 = 1:length(HT)
29 Ltest = HT(1,k2);
30 Utest = HT(2,k2);
31 gammac = Et/NoReal;
32 rr = real(rx)/sqrt(NoReal/2);
33 % Store the true class and the loglikelihood in a structure
34 lkhTest(tests).class = k1;
35 lkhTest(tests).lkh(k2) = cdmaLogLikelihood(rr,gamma,Ltest,Utest,delta_var);
36 end
37 end
38 % Compute Error Probability Matrix using MAP, in this case the same as LRT
39 for test = 1:ntest
40 trueClass = lkhTest(test).c;
41 [~,decision] = max(lkhTest(test).lkh);
42 confmatrix(trueClass,decision) = confmatrix(trueClass,decision)+1;
43 end
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Nomenclature

Acronyms

ALRT . . . . . . . . . . . . . Average Likelihood Ratio Test
AGWN . . . . . . . . . . . . . Additive White Gaussian Noise
BPSK . . . . . . . . . . . . . Binary Phase Shift Keying
CDMA . . . . . . . . . . . . . Code Division Multiple Access
CON . . . . . . . . . . . . . Complete Orthonormal Set
dB . . . . . . . . . . . . . Decibels
EM . . . . . . . . . . . . . Expectation Maximization
FFT . . . . . . . . . . . . . Fast Fourier Transform
GLRT . . . . . . . . . . . . . Generalized Likelihood Ratio Test
HLRT . . . . . . . . . . . . . Hybrid Likelihood Ratio Test
LRT . . . . . . . . . . . . . Likelihood Ratio Test
MMSE . . . . . . . . . . . . . Minimum Mean Squared Error
MPI . . . . . . . . . . . . . Multiple Programming Interface
MSC . . . . . . . . . . . . . Maximum Squared Correlation
PN . . . . . . . . . . . . . Pseudo noise
QAM . . . . . . . . . . . . . Quadrature Amplitude Modulation
QLRT . . . . . . . . . . . . . Quasi-Average Likelihood Ratio Test
QPSK . . . . . . . . . . . . . Quaternary Phase Shift Keying
ROC . . . . . . . . . . . . . Receiver’s Operating Characteristic
SNR . . . . . . . . . . . . . Signal-to-Noise Ratio
TSC . . . . . . . . . . . . . Total Squared Correlation
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Symbols

{}L . . . . . . . . . . . . . set of L elements or column vector
{}L×U . . . . . . . . . . . . . matrix of L rows and U columns
RL . . . . . . . . . . . . . real domain of dimension L
C . . . . . . . . . . . . . complex domain
Z∗ . . . . . . . . . . . . . domain of real non-negative integers
Re{·} . . . . . . . . . . . . . real part operator
Im{·} . . . . . . . . . . . . . imaginary part operator
⊗ . . . . . . . . . . . . . Kronecker product
⟨·, ·⟩ . . . . . . . . . . . . . inner product
∥ · ∥F . . . . . . . . . . . . . Frobenius norm
∥ · ∥ . . . . . . . . . . . . . vector norm
δ (t) . . . . . . . . . . . . . Dirac delta function
δi, j . . . . . . . . . . . . . Kronecker delta
(·)H . . . . . . . . . . . . . Hermitian operator
(·)T . . . . . . . . . . . . . transpose operator
abs(·) . . . . . . . . . . . . . absolute value
! . . . . . . . . . . . . . factorial symbol
r⃗R . . . . . . . . . . . . . real part of a complex column vector
r⃗I . . . . . . . . . . . . . imaginary part of a complex column vector
(⃗rR)i . . . . . . . . . . . . . ith component of a real column vector
0⃗ . . . . . . . . . . . . . null column vector
1⃗ . . . . . . . . . . . . . column vector of 1 entries
000 . . . . . . . . . . . . . null matrix
I . . . . . . . . . . . . . identity matrix
H . . . . . . . . . . . . . Hadamard matrix
IL×L . . . . . . . . . . . . . L×L identity matrix
QR . . . . . . . . . . . . . real matrix
QI . . . . . . . . . . . . . imaginary part of a matrix
ci, j . . . . . . . . . . . . . matrix element, row i and column j
a⃗ . . . . . . . . . . . . . CDMA amplitude vector
g⃗ . . . . . . . . . . . . . CDMA sign vector
diag(⃗g) . . . . . . . . . . . . . diagonal matrix construction based on g⃗
β . . . . . . . . . . . . . Precision parameter
E . . . . . . . . . . . . . Energy per symbol
ET . . . . . . . . . . . . . Total energy
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N0/2 . . . . . . . . . . . . . Noise power density
γ . . . . . . . . . . . . . symbol-level SNR
γc . . . . . . . . . . . . . chip-level SNR
b⃗ . . . . . . . . . . . . . data vector
C, Q . . . . . . . . . . . . . code matrices
s(t) . . . . . . . . . . . . . transmit signal
y(t), y⃗ . . . . . . . . . . . . . received signal
r(t), r⃗ . . . . . . . . . . . . . observation
n(t), n⃗ . . . . . . . . . . . . . noise signal
E{·} . . . . . . . . . . . . . expectation operator
R . . . . . . . . . . . . . Autocorrelation matrix
R(∆t) . . . . . . . . . . . . . Autocorrelation function
N . . . . . . . . . . . . . Normal distribution
H . . . . . . . . . . . . . hypothesis
R . . . . . . . . . . . . . Observation
L . . . . . . . . . . . . . code length
U . . . . . . . . . . . . . active users
K . . . . . . . . . . . . . number of chips
λ (⃗r|H ) . . . . . . . . . . . . . average likelihood
λ (⃗r|H ,C,⃗b) . . . . . . . . . . . . . conditional likelihood
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